Draft Truckee Meadows Storm Water Monitoring Annual Report Water Year 2018

Prepared for:

In Cooperation with:

Prepared by:

December 2018

December 12, 2018

A REPORT PREPARED FOR:

Environmental Engineering Team
Public Works
1 East First Street, 7th floor
Reno, Nevada 89501
(775) 334-2350
stormwater@reno.gov

In Cooperation with:

The Truckee Meadows Stormwater Permit Coordinating Committee

(NPDES MS4 Discharge Permit No. NV000001)

by

DRAFT

Brian Hastings, P.G. Hydrologist/Geomorphologist

Reviewed By:

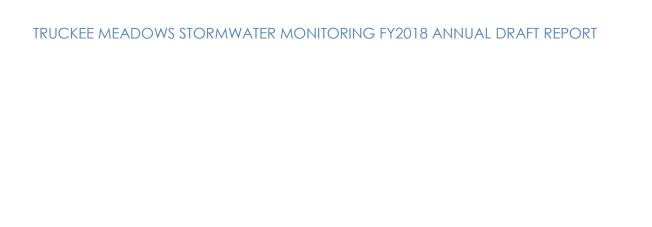
DRAFT

Benjamin Trustman Hydrologist

GIS and QA/QC by:

DRAFT

Kat Ridolfi Senior Water Quality Specialist



© 2018 Balance Hydrologics, Inc. Project Assignment: 213136

DRAFT

Jack Jacquet
Geomorphologist/Engineer

12020 Donner Pass Road, Unit B1 ~ Truckee, California 96161 ~ (530) 550-9776 ~ office@balancehydro.com

< This page intentionally left blank >

TABLE OF CONTENTS

EXEC	JTIVE SU	JMMARY	1
1	INTRO	DUCTION AND PROJECT PURPOSE	4
1.1	Introa	luction	4
1.2	Projec	ct Purpose	4
1.3	Regul	latory Background	6
2	SAMP	LING AND ANALYSIS PLAN (2017) AND ADDENDUMS	19
	2.1.1	Sampling and Analysis Plan	19
	2.1.2	Special Study: Baseflow Sampling and Analysis from Two Mai	n Tributaries 19
2.2	Const	tituents of Concern	20
	2.2.1	Nitrogen and Phosphorus	20
	2.2.2	Suspended and Dissolved Solids	21
	2.2.3	Pathogens	22
	2.2.4	Other Physical Parameters	22
3	STOR/	M MONITORING STATIONS	24
3.1	Tribut	ary Stations	24
3.2	Storm	water Outfall Stations	24
4	STOR/	M MONITORING PROGRAM METHODS	28
4.1	Types	of Equipment	28
4.2	Samp	oling Procedures	28
4.3	Stream	mflow/Discharge Gaging	29
4.4	Manu	val Streamflow/Discharge Measurements	30
4.5	Autor	mated Sampling and Discharge Computation	31
4.6	Calcu	ulation of Constituent Loads and Yields	32
4.7	Quali	ty Assurance and Quality Control	33
4.8	Devia	ations from the Sampling and Analysis Plan	34
5	MONI	ITORING RESULTS FY2018	35
5.1	Work	Conducted in FY2018	35
5.2	Precip	oitation Summary FY2018	37
5.3	FY201	8 Hydrologic Response	39
	5.3.1	Truckee River Hydrologic Response, FY2018	40
	5.3.2	North Truckee Drain Hydrologic Response, FY2018	41
	5.3.3	Steamboat Creek Hydrologic Response, FY2018	42

9	REFERI	ENCES	118
8	LIMITA	TIONS	117
7	RECO	MMENDATIONS	115
6	CONC	CLUSIONS	113
	5.5.3	Baseflow Loads Compared to Total Maximum Daily Loads Established the Truckee River at Lockwood	for 109
	5.5.2	Stormwater Loads Compared to Total Maximum Daily Loads Establishe for the Truckee River at Lockwood	ed 105
	5.5.1	Baseflow Loads (24-Hours) from Steamboat Creek and North Truckee Drain	102
5.5	Storm	water and Baseflow Constituent Loads	94
	5.4.8	TDS Instantaneous Loads	93
	5.4.7	Total-P Instantaneous Loads	92
	5.4.6	Total-N Instantaneous Loads	91
	5.4.5	Physical Parameters: Dissolved Oxygen, pH, Specific Conductance an Turbidity	nd 82
	5.4.4	Escherichia Coli Bacteria	81
	5.4.3	Total Dissolved Solids and Total Suspended Solids	73
	5.4.2	Total Phosphorus and Ortho Phosphate	64
	5.4.1	Total Nitrogen, Nitrate, Nitrite, and Total Kjeldahl Nitrogen	52
5.4	Storm	water and Baseflow Constituent Concentrations and Physical Paramete	rs 52
	5.3.9	Arlington (H-19) Stormwater Urban Outfall Hydrologic Response, FY2013	8 51
	5.3.8	Yori Drain Hydrologic Response, FY2018	49
	5.3.7	Whites Creek Hydrologic Response, FY2018	48
	5.3.6	Thomas Creek Hydrologic Response, FY2018	46
	5.3.5	Chalk Creek Hydrologic Response, FY2018	45
	5.3.4	Alum Creek Hydrologic Response, FY2018	43

LIST OF TABLES

Table 1-1	2014 Impaired Waters and Listed Constituents, 303(d) List, Truckee	
	Meadows, Nevada (adapted from NDEP, 2016)	7
Table 1-2	FY2018 Monitoring Stations with Current Tributary or Stream Segments	
	Water Quality Standards, per Nevada Administrative Code	11
Table 1-3	Standards of Water Quality, Truckee River from California/Nevada Sta	ate
	Line to Idlewild (NAC 445a. 1684)	12
Table 1-4	Standards of Water Quality, Truckee River from Idlewild to E. McCarre	n
	Boulevard Bridge (NAC 445a. 1686)	13
Table 1-5	Standards of Water Quality, Truckee River from E. McCarren Boulevar	d
	Bridge to Lockwood (NAC 445a. 1688)	14
Table 1-6	Standards of Water Quality, Steamboat Creek at Gaging Station (NA	С
	445a. 1724)	15
Table 1-7	Standards of Water Quality, Steamboat Creek from USGS Gaging Sta	tion
	10349300 to Confluence with Truckee River (NAC 445a. 1726)	16
Table 1-8	Standards of Water Quality, Whites Creek below Steamboat Ditch (N.	AC
	445a. 1758)	17
Table 1-9	Total Maximum Daily Loads (TMDLs), Truckee River at Lockwood	18
Table 3-1	Monitoring Location Descriptions, Truckee Meadows Stormwater	
	Monitoring Program, FY2018	26
Table 3-2	Tributary Monitoring Sites Receiving Tailwaters from Irrigation Ditches	27
Table 4-1	Instruments Used to Measure Water Quality, Runoff and Physical	
	Parameters during Storm Events	28
Table 5-1	Monitoring Stations with Automated Samplers and Dates Sampled	95
Table 5-2	Constituent Loads and Runoff Volumes for Arlington Urban Outfall, A	ugust
	6, 2017 Storm Event	96
Table 5-3	Constituent Loads and Runoff Volumes at Arlington and Oxbow Natu	ire
	Park, September 6, 2017	97
Table 5-4	Constituent Loads and Runoff Volumes at Three Urban Outfalls and Tv	WO
	Tributaries, November 15-17, 2017	98
Table 5-5	Constituent Loads and Runoff Volumes at Fisherman's Park II, January	/ 18,
	2018	100
Table 5-6	Constituent Loads and Runoff Volumes for an Mary Wahl Drain (urbar	า
	outfall) and North Truckee Drain at Big Fish Drive, April 6-7, 2018	101

Table 5-7	Summer Baseflow Volumes and Constituent Loads for Steamboat Cree	∍k,
	September 19-20, 2017	103
Table 5-8	Winter Baseflow Volumes and Constituent Loads for Three Tributaries to	the
	Truckee River, February 6-7, 2018	104
Table 5-9	Daily Loads Measured in Stormwater Runoff, August 6, 2017	105
Table 5-10	Daily Loads Measured from Stormwater Runoff, September 6, 2017	106
Table 5-11	Daily Loads Measured from Stormwater Runoff, November 16-17, 2017	107
Table 5-12	Daily Loads Measured from Baseflow in Steamboat Creek, January 18,	,
	2018	108
Table 5-13	Daily Loads Measured from Stormwater Runoff, April 6-7, 2018	109
Table 5-14	Daily Loads Measured from Baseflow in Steamboat Creek, September	19-
	20, 2017	110
Table 5-15	Daily Load Measured from Baseflow in Steamboat Creek and North	
	Truckee Drain, February 6-7, 2018	111
Table 5-16	Daily Load Measured from Baseflow in Steamboat Creek and North	
	Truckee Drain, February 6-7, 2018	112

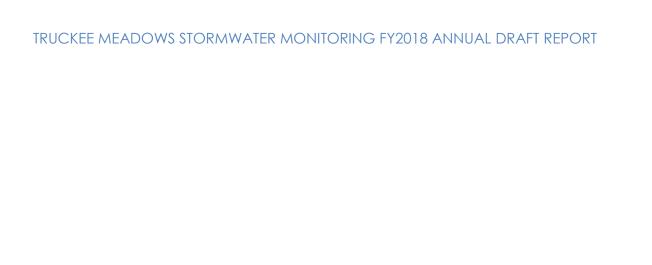
LIST OF FIGURES

Figure 1-1	Location Map for Truckee Meadows, including City of Reno, City of S	parks
	and parts of Washoe County, Nevada	5
Figure 1-2	Truckee Meadows Monitoring Map with Sampling Locations, Watersh	eds,
	and 303(d) Listed Stream Segment and Water Quality Standards.	9
Figure 3-1	Truckee Meadows Stormwater Monitoring Stations, Streamflow Gagin	ıg
	Stations, Rain Gages, and Station Equipment, FY2018	25
Figure 5-1	Cumulative Precipitation at 6 Different Rain Gages, Truckee Meadow	/S,
	Nevada, FY2018	38
Figure 5-2	Daily Mean Streamflow, Truckee River at Three Stations, Truckee	
	Meadows, Nevada, FY2018	41
Figure 5-3	Continuous (15-minute) Streamflow, North Truckee Drain at Orr Ditch	and
	Big Fish Drive, Truckee Meadows, Nevada, FY2018	42
Figure 5-4	Continuous (15-minute) Streamflow, Steamboat Creek at Three Static	ons,
	Truckee Meadows, Nevada, FY2018	43
Figure 5-5	Continuous (15-minute) Streamflow, Alum Creek at Truckee River, FY2	2018
	45	

Figure 5-6	Continuous Streamflow (15-minute), Chalk Creek at Chalk Bluff, FY2018	46
Figure 5-7	Continuous Streamflow (15-minute), Thomas Creek at S. Meadows	
	Parkway, FY2018	48
Figure 5-8	Continuous Streamflow (hourly), Whites Creek at Old Virginia Highway,	
	FY2018.	49
Figure 5-9	Continuous Streamflow (5-minute), Yori Drain at Steamboat Creek, FY2 51	018
Figure 5-10	Continuous Discharge (5-minute), Arlington outfall (H-19), FY2018	52
Figure 5-11	Total Nitrogen (Total-N) Concentrations for Tributaries and Stormwater	
	Urban Outfalls to the Truckee River upstream of Idlewild, FY2018	54
Figure 5-12	Total Nitrogen (Total-N) Concentrations for Stormwater Urban Outfalls t	0
	the Truckee River from E. McCarran upstream to Idlewild, FY2018	55
Figure 5-13	Total Nitrogen (Total-N) Concentrations for Tributaries to the Truckee Riv	ver
	between Lockwood, upstream to E. McCarran, FY2018	55
Figure 5-14	Total Nitrogen (Total-N) Concentrations for Steamboat Creek and	
	Tributaries, FY2018	56
Figure 5-15	Total Nitrogen (Total-N) Concentrations for N.F. Whites Creek, WY2017	56
Figure 5-16	Nitrate Concentrations for Tributaries and Stormwater Urban Outfalls to	the
	Truckee River upstream of Idlewild, FY2018	58
Figure 5-17	Nitrate Concentrations for Stormwater Urban Outfalls to the Truckee Riv	⁄er
	from E. McCarran upstream to Idlewild, FY2018	59
Figure 5-18	Nitrate Concentrations for Tributaries to the Truckee River between	
	Lockwood, upstream to E. McCarran, FY2018	59
Figure 5-19	Nitrate Concentrations for Steamboat Creek, FY2018	60
Figure 5-20	TKN Concentrations for Tributaries and Stormwater Urban Outfalls to the	Э
	Truckee River upstream of Idlewild, FY2018	61
Figure 5-21	TKN Concentrations for Stormwater Urban Outfalls to the Truckee River	
	from E. McCarran upstream to Idlewild, FY2018	62
Figure 5-22	Concentrations for Tributaries to the Truckee River between Lockwood	,
	upstream to E. McCarran, FY2018	62
Figure 5-23	TKN Concentrations for Steamboat Creek and Tributaries, FY2018	63
Figure 5-24	TKN Concentrations for Whites Creek, FY2018	63
Figure 5-25	Total-P Concentrations for Tributaries and Stormwater Urban Outfalls to	the
	Truckee River upstream of Idlewild, FY2018	65

Figure 5-26	Total-P Concentrations for Stormwater Urban Outfalls to the Truckee Riv	/er
	from E. McCarran upstream to Idlewild, FY2018	66
Figure 5-27	Total-P Concentrations for Tributaries to the Truckee River between	
	Lockwood, upstream to E. McCarran, FY2018	66
Figure 5-28	Total-P Concentrations for Steamboat Creek between Rhodes Road	
	upstream to the outlet of Washoe Lake, FY2018	67
Figure 5-29	Total-P Concentrations for Steamboat Creek and Tributaries, FY2018	67
Figure 5-30	Total P Concentrations for Whites Creek, FY2018	68
Figure 5-31	Ortho-P Concentrations for Tributaries to the Truckee River upstream of	
	Idlewild, FY2018	70
Figure 5-32	Ortho-P Concentrations for Stormwater Urban Outfalls to the Truckee R	iver
	from E. McCarran upstream to Idlewild, FY2018	70
Figure 5-33	Ortho-P Concentrations for Tributaries to the Truckee River between	
	Lockwood, upstream to E. McCarran, FY2018	71
Figure 5-34	Ortho-P Concentrations for Steamboat Creek between Rhodes Road	
	upstream to the outlet of Washoe Lake, FY2018	71
Figure 5-35	Ortho-P Concentrations for Steamboat Creek and Tributaries, FY2018	72
Figure 5-36	Ortho-P Concentrations for Whites Creek, FY2018	72
Figure 5-37	Total Dissolved Solids (TDS) Concentrations for Tributaries and Stormwat	er
	Urban Outfalls to the Truckee River upstream of Idlewild, FY2018	74
Figure 5-38	TDS Concentrations for Stormwater urban outfallss to the Truckee River	
	from E. McCarran upstream to Idlewild, FY2018	75
Figure 5-39	TDS Concentrations for Tributaries to the Truckee River from Lockwood,	
	upstream to E. McCarran, FY2018	75
Figure 5-40	TDS Concentrations for Steamboat Creek between Rhodes Road	
	upstream to the outlet of Washoe Lake, FY2018	76
Figure 5-41	TDS Concentrations for Steamboat Creek and Tributaries, FY2018	76
Figure 5-42	TDS Concentrations for Whites Creek, FY2018	77
Figure 5-43	Total Suspended Solids (TSS) Concentrations for Tributaries and Stormwo	ater
	Urban Outfalls to the Truckee River upstream of Idlewild, FY2018	79
Figure 5-44	TSS Concentrations for Stormwater urban outfallss to the Truckee River	
	from E. McCarran upstream to Idlewild, FY2018	79
Figure 5-45	TSS Concentrations for Tributaries to the Truckee River from Lockwood,	
	upstream to E. McCarran, FY2018	80
Figure 5-46	TSS Concentrations for Steamboat Creek and Tributaries, FY2018	80

Figure 5-47	TSS Concentrations for Whites Creek, FY2018	81
Figure 5-48	E. coli Counts for Samples Collected in Truckee Meadows, FY2018	82
Figure 5-49	DO Concentrations for Tributaries and Stormwater urban outfallss to the	;
	Truckee River from Lockwood upstream to California/Nevada State Line	Э,
	FY2018	84
Figure 5-50	DO Concentrations for Steamboat Creek and Tributaries, FY2018	84
Figure 5-51	DO Concentrations for Whites Creek, FY2018	85
Figure 5-52	pH for Tributaries and Stormwater Urban Outfalls to the Truckee River	
	upstream of Idlewild, FY2018	86
Figure 5-53	pH for Stormwater urban outfallss to the Truckee River from E. McCarrar	1
	upstream to Idlewild, FY2018	87
Figure 5-54	pH for Tributaries to the Truckee River from Lockwood, upstream to E.	
	McCarran, FY2018	87
Figure 5-55	pH for Steamboat Creek and Tributaries, FY2018	88
Figure 5-56	pH for Whites Creek, FY2018	88
Figure 5-57	Specific Conductance (SC) Across all Stations, Truckee Meadows,	
	FY2018\	89
Figure 5-58	Turbidity Across all Stations, Truckee Meadows, FY2018 Stormwater and	
	Baseflow Constituent Instantaneous Loads	90
Figure 5-59	Total Nitrogen (Total-N) Instantaneous Loads Across Tributary Sites in	
	Truckee Meadows, FY2018	92
Figure 5-60	Total Phosphorus (Total-P) Instantaneous Loads Across Tributary Sites in	
	Truckee Meadows, FY2018	93
Figure 5-61	Total Dissolved Solids (TDS) Instantaneous Loads Across Tributary Sites in	
	Truckee Meadows, FY2018	94


APPENDICES

Appendix A Station Observer Logs

Appendix B Equipment Calibration Logs

Appendix C Constituent Concentrations

Appendix D Laboratory Reports

< This page intentionally left blank >

EXECUTIVE SUMMARY

In 1990, the Nevada Division of Environmental Protection (NDEP) issued the Municipal Separate Storm Sewer System (MS4) permit to the Truckee Meadows Region, which includes the City of Reno, City of Sparks, and Washoe County. The permit requires the continued administration, implementation, and enforcement of a Stormwater Management Program (SWMP) to mitigate pollution from stormwater runoff within the Truckee Meadows permit area including receiving waters of the Truckee River and its tributaries.

The Truckee River through Truckee Meadows has impaired water quality by water temperature, excessive nutrients, and increased total dissolved solids (TDS). Water quality is of particular concern because the river has a number of beneficial uses including aquatic habitat, recreation, and potable water. To attain nutrient-related water quality objectives in the Truckee River the NDEP has developed a Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and TDS.

Storm event and baseflow (ambient) water quality samples have been collected since 2003 as part of the SWMP to better characterize stormwater quality. This annual report is required under the MS4 permit to: (a) report stormwater quality measured in water year 2017 (WY2017); (b) continue developing a robust data set of stormwater quality to facilitate identification of water quality or environmental degradation problems of the Truckee Meadows; (c) document changes in water quality over time in response to land management, sediment control strategies, and other improvement measures; and (d) promote continued protection of the Truckee River.

Balance Hydrologics evaluated water quality in stormwater and baseflow at 15 monitoring stations as part of the Truckee Meadows Regional Storm Water Quality Management Program in FY2018. Grab samples and instantaneous loads were quantified for 7 stations, while automated samplers at 4 urban outfalls and 3 tributary stations allowed us to quantify constituent loads to the Truckee River during stormwater and baseflow conditions.

Total annual precipitation in the Truckee Meadows in FY2018, as measured at the Reno-Tahoe International Airport, was slightly above the long-term normal of 7.40 inches. Most of this precipitation fell in November and March with some summer convective storms observed in August, September and October, and late winter storms in April and May. June was dry.

We collected 2 stormwater samples at each station during 7 different storm events to characterize stormwater pollutant concentrations and pollutant loads. Baseflow water quality was also measured on 8 tributaries to characterize summer baseflow (September 19-20, 2017) and winter baseflow (February 6-7, 2018). In general, baseflow and stormwater runoff volumes were above long-term daily median established for long-term (USGS) gaging stations. Flow conditions likely reflect the cumulative effects of a near average precipitation year following the wettest year on record.

Across all storms sampled at all stations Total-N concentrations in stormwater exceeded WQS in all storms and at all locations where WQS are established. Total-N concentrations in tributary baseflow also exceed WQS across all locations sampled and where WQS are established. Highest stormwater concentrations were measured from urban outfalls. Whereas the highest baseflow concentrations were measured from North Truckee Drain and Yori Drain.

Across all storms sampled at all stations Total-P concentrations in stormwater ranged between 0.47 mg/L and 1.4 mg/L. While annual average WQS are provided for many of the tributaries monitored, single value WQS are limited to Whites Creek. In one of two storm events, Total-P concentrations exceeded the Whites Creek WQS. Highest stormwater concentrations were measured from urban outfalls and Whites Creek. Whereas the highest baseflow concentrations were measured from Chalk Creek; however, North Truckee Drain at Orr Ditch and Steamboat Creek exhibited only slightly lower concentrations.

TDS concentrations in stormwater were also measured and compared across all stations. At least one stormwater sample collected from all 4 urban outfalls exceeded the specified requirement and most, if not all samples exceeded their requirements in Chalk Creek, Alum Creek, and North Truckee Drain. There are no WQS or requirements for Steamboat Creek and tributaries with the exception of Steamboat Creek at Rhodes Road; where both storm samples met WQS or requirements. Highest stormwater concentrations were measured from Chalk Creek and North Truckee Drain. Highest baseflow concentrations were also measured from Chalk Creek and North Truckee Drain.

Limited samples were collected or analyzed for E. coli in FY2018 due to holding time constraints at the time of sampling. Samples were limited to Alum Creek, Whites Creek, and Steamboat Creek at Rhodes Road. Counts exceeded WQS for Whites Creek in a stormwater sample and Steamboat Creek at Rhodes Road in both a stormwater and baseflow sample.

Physical parameters are measured manually upon every station visit and when water is present, including pH, specific conductance, DO, and turbidity. All measures of DO met WQS where established with the exception of a few measurements from urban outfalls (Arlington and Oxbow Nature Park) and Boynton Slough during summer convective stormwater runoff events. Most measures of pH generally met established WQS to protect beneficial uses with few exceptions. There are no WQS established for specific conductance or turbidity.

Stormwater loads were measured from 2 storms at every station. Loads measured suggest that both spatial and temporal scales are important. For example, tributaries draining large areas typically measure the highest loads; however, if stations are compared by yields, areas with more urban land-uses typically are responsible for higher pollutant yields. On a temporal scale, fall frontal storms generate higher loads than storms measured in other times of the year. These results may reflect the time since last rainfall-runoff event; fall frontal storms typically occur after a long dry period when pollutants accumulate over time and are flushed into local waters by the first large storm event, also informally known as the *first flush*.

Similarly, a baseflow daily load was measured from Steamboat Creek during the summer of 2017 and from North Truckee Drain, Steamboat Creek, and a tributary of Steamboat Creek (Yori Drain) in the winter of 2018. Summer daily loads in Steamboat Creek exceeded TMDLs established for three constituents (Total-N, Total-P, and TDS) in the Truckee River at Lockwood. We note that Steamboat Creek baseflows in September 2017 were measured to be much higher than long-term average baseflow, conditions reflective of the wettest year on record (WY2017). Winter baseflow daily loads measured from two main tributaries were less than the established TMDLs; however, the majority of nutrient loads originated from Steamboat Creek.

1 INTRODUCTION AND PROJECT PURPOSE

1.1 Introduction

The Truckee Meadows Storm Water Permit Coordinating Committee (SWPCC), composed of representatives of the City of Reno, City of Sparks and Washoe County, is responsible for the development, administration, and implementation of the Stormwater Management Program (SWMP) for the Truckee Meadows (Figure 1-1). This is part of a National Pollution Discharge Elimination System (NPDES) Permit to monitor and implement source controls designed to reduce and prevent harmful pollutants from being washed by stormwater runoff into local water bodies. The SWPCC is required to conduct a stormwater monitoring program following a Sampling and Analysis Plan (SAP) that describes the sampling program and approach. Under this program, sampling has been conducted since 2003 at a number of established monitoring stations across the Truckee Meadows with results reported to the Nevada Department of Environmental Protection (NDEP). In fiscal year 2018 (FY2018), Balance Hydrologics (Balance) was contracted to continue implementing the stormwater monitoring program under the guidance of the SWPCC and in accordance with the 2018 SAP (Trustman and others, 2018).

1.2 Project Purpose

The primary goal of the stormwater monitoring program is to develop a better understanding of how stormwater runoff affects receiving waters within the MS4 permit area over time through monitoring, research and investigation (Stantec, 2012). With accurate, and representative monitoring data, program effectiveness can be assessed and new or revised stormwater Best Management Practices (BMPs) can be identified. In support of this overall program goal, four monitoring objectives have been identified:

- 1. Characterize stormwater quality in tributaries and urban stormwater outfalls to the Truckee River;
- 2. Collect the data necessary to improve our understanding of stormwater effects on listed constituents in impaired receiving waters;
- 3. Measure the baseflow (ambient) water quality in selected tributaries with varying land-use types within the study area; and

_

¹ Fiscal year corresponds to the City of Reno's 12-month fiscal period beginning July 1, for a given year through June 30 of the following named year.

4. Conduct special studies and investigations as needs arise and funding is available to better understand stormwater issues in the area.

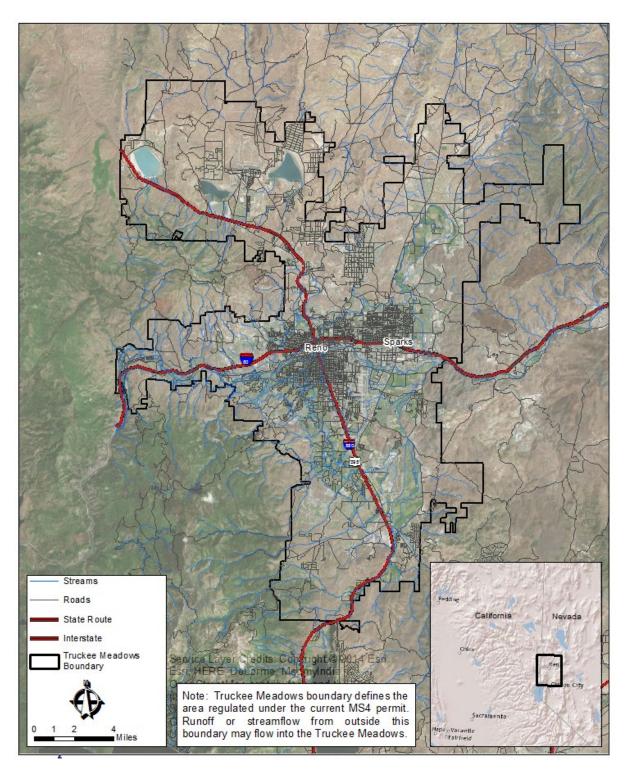


Figure 1-1 Location Map for Truckee Meadows, including City of Reno, City of Sparks and parts of Washoe County, Nevada

1.3 Regulatory Background

The discharge of municipal stormwater runoff within the Truckee Meadows is regulated under a single discharge permit, a Municipal Separate Storm Sewer System (MS4) permit. The permit is jointly issued to the City of Reno, City of Sparks, and Washoe County and allows the co-permittees to discharge municipal stormwater runoff into the receiving waters of the Truckee River and tributaries. The permit also requires stormwater monitoring, defined as regular observation and sampling that is representative of the volume and nature of the monitored discharge (NDEP, 2010).

In addition to the NPDES Stormwater Permit Program, Section 303(d) of the Clean Water Act also established a program to manage water pollution in water bodies that are not meeting federal water quality standards. Section 303(d) requires that states establish a list of impaired water bodies and assess the sources of that pollution.

Every two years, NDEP is required to prepare and submit an updated 303(d) list to the U.S. Environmental Protection Agency (USEPA). The most recent list (NDEP, 2016) identifies the Truckee River, 10 tributaries, and 3 other water bodies (i.e., lakes) within the Truckee Meadows as impaired (**Table 1-1**). Impairment differs between listed water bodies, but cited constituents of concern include nutrients, bacteria, metals, and general physical parameters such as pH, dissolved oxygen, specific conductance, and temperature.

Table 1-1 2014 Impaired Waters and Listed Constituents, 303(d) List, Truckee Meadows, Nevada (adapted from NDEP, 2016)

Impaired Waters and Listed Constituents, 2014 303(d) List, Truckee Meadows

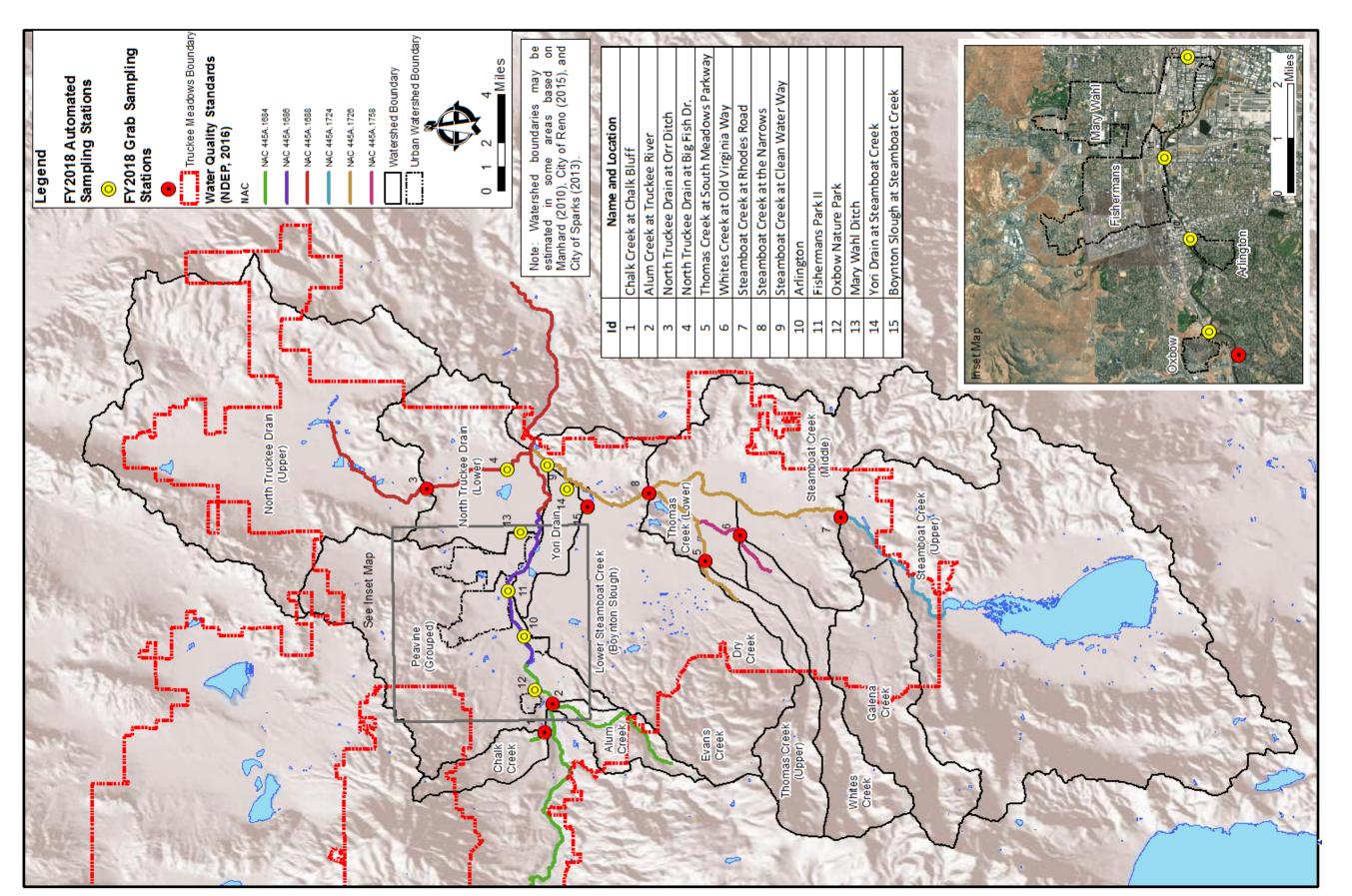
Monitoring	Water Name	Reach Impaired	Impairment	Impaired Beneficial Us
FY2018	Truckee River	From NV-CA state line to E. McCarran	Water Temperature	AQL
Yes	Alum Creek	Entire reach	pH Total-P Ortho-P Water Temperature TDS TSS	PWL, RWC AQL, RWC AQL, RWC AQL MDS AQL
Yes	Chalk Creek	Entire reach	Nitrate Total-P Ortho-P Selenium Sulfates Temperature TDS TSS	AQL, RWC AQL, RWC AQL, RWC AQL MDS AQL MDS AQL
No	Sparks Marina	Entire reservoir	Total-N Total-P TDS	AQL, RWC AQL, RWC MDS
No	Tracy Pond	Entire area	рН	AQL, PWL, RWC
No	Dry Creek	Headwaters to Boynton Slough	E-coli	RWC
No	Evans Creek	HWY 395 to Dry Creek	E-coli	RWC
No	Franktown Creek	From irrigation diversion to Washoe Lake	Iron	AQL
No	Galena Creek	(see NDEP, 2014)	рН	AQL, PWL, RWC
No	Hunter Creek	From Hunter Lake to its confluence with the Truckee River	рН	AQL
Yes	Steamboat Creek	Little Washoe Lake to USGS 10349300 USGS 10349300 to Truckee River	E-coli Arsenic Boron E-coli Iron	RWC AQL, IRR, WLS IRR, WLS RWC AQL
Yes	Thomas Creek	Below Steamboat Ditch	Arsenic Boron	AQL, IRR, WLS IRR, WLS
No	Washoe Lakes	Entire lakes	Mercury in fish tissue	FC
Yes (N. Fork Only)	Whites Creek	Middle Fork	E-coli Iron	RWC AQL
		North and South Forks and Whites Creek North Fork	Total-P Total-P E-coli	AQL, RWC AQL, RWC RWC

Notes:

Monitoring indicated with "yes" include at least one station of the listed waters monitored by Balance Hydrologics, Inc. as part of this program

AQL = aquatic life, FC = fish consumption, IRR = irrigation, MDS = municipal domestic supply, PWL = propagation of wildlife,

 $RNC = recreation \ not \ involving \ contact \ with \ water, \ RWC = recreation \ involving \ contact \ with \ water, \ WLS = watering \ of \ livestock.$


Ortho-P = Orthophosphate, Total-N = Total Nitrogen, Total-P = Total Phosphorus, TDS = Total Dissolved Solids, TSS =

Total Suspended Solids.

Annually, the SWPCC prioritizes listed water bodies for monitoring by sample collection and analysis. Ultimately, the monitoring program is devised to be efficient in administering the program within the annual budget allocated each year. As a result, selected constituents of concern and water bodies are targeted for sampling and analysis while others are reserved for future monitoring as additional funding becomes available. Opportunities to revise monitoring locations, add and remove constituents of concern or monitoring stations are addressed in annual reviews and possible revisions or addendums to the SAP.

Nevada's water quality standards, as contained in the Nevada Administrative Code (NAC) 445A.11704 – 445A.2234, define the water quality goals for a segment or length of a stream, river or entire waterbody by designating beneficial uses of the water and setting criteria necessary to protect the beneficial uses and/or requirements to maintain existing higher quality. Beneficial uses include, but are not limited to, irrigation, recreation, aquatic life, and drinking water supply. In many cases, listed waters have different beneficial uses and different numeric criteria. Some listed waters have two or more segments, each segment having different beneficial uses and numeric criteria.

For the purposes of this program, specific water-quality numeric criteria were identified for each tributary or segment monitored in accordance with current NACs and their control points. Figure 1-2 identifies watershed boundaries for tributaries monitored under this program, stations monitored in FY2018 and tributary or stream segments with specific beneficial uses and numeric criteria used to compare water quality results measured in this program. Each monitoring station as they relate to tributary or segment-specific water quality standards is outlined in Table 1-2. Finally, we present water quality parameters, beneficial uses, and water quality standards and/or requirements for each of the six different tributaries or stream segments listed in Table 1-2(Table 1-3 to Table 1-8). We note that some numeric criteria include single value (S.V.) measures and/or annual averages (A- Avg.). Samples collected as part of this program are considered single value measures and are compared to S.V. standards when they exist. If S.V. standards do not exist for a given parameter, results will be compared to A-Avg., but should be interpreted with caution.

Truckee Meadows Monitoring Map with Sampling Locations, Watersheds, and 303(d) Listed Stream Segment and Water Quality Standards. Figure 1-2

Balance Hydrologics, Inc.

< This page intentionally left blank >

Balance Hydrologics, Inc.

Table 1-2 FY2018 Monitoring Stations with Current Tributary or Stream Segments Water Quality Standards, per Nevada Administrative Code

Nevada Administrative Code	Description of Water Quality Control	Monitored Waters That Apply	Monitoring Station	Monitoring Station Code
NAC 445a. 1684	Truckee River from California/Nevada S	State Line to Idlewild		
		Chalk Creek	Chalk Bluff	CC@CB
		Alum Creek	at Truckee River	AC@TR
		Urban Outfall	Oxbow Nature Park	C-24
NAC 445a. 1686	Truckee River from Idlewild to E. McCai	rren Boulevard Bridge		
		Urban Outfall	Island Ave. at S. Arlington Ave	H-19
		Urban Outfall	Fisherman's Park II	D-16
		Urban Outfall	Freeport Blvd. nr Marietta Way	SDOE 008936
NAC 445a. 1688	Truckee River from E. McCarren Boulevard Bridge to Lockwood			
		North Truckee Drain at Orr Ditch		NTD@ORR
		North Truckee Drain	at Big Fish Drive	NTD@BFD
NAC 445a. 1724	Steamboat Creek at gaging station (Rho	odes Road upstream to	Washoe Lake)	
		Steamboat Creek	at Rhodes Road	SBC@RR
NAC 445a. 1726	Steamboat Creek from USGS gage 1034	19300 to confluence wi	th Truckee River	
		Steamboat Creek	at the Narrows	SBC@NAR
		Steamboat Creek	at Clean Water Way	SBC@CWW
		Yori Drain	at Steamboat Creek	YD@SBC
		Boynton Slough	at Steamboat Creek	BS@SBC
		Thomas Creek	at South Meadow Parkway	TC@SMP
NAC 445a. 1758	Whites Creek below Steamboat Ditch			
		N.F. Whites Creek	at Old Virginia Highway	WC@OVH

Table 1-3 Standards of Water Quality, Truckee River from California/Nevada State Line to Idlewild (NAC 445a. 1684)

STANDARDS OF WATER QUALITY

Truckee River at Idlewild

	REQUIREMENTS	WATER QUALITY					_		3				_
	7	1		-	_			ticial	Useª		_		_
PARAMETER	TO MAINTAIN	STANDARDS FOR	Livestock	Irrig ation	Aquatic	Contact	Noncontac	Municipal	Industrial	Wildlife	Aesthetic	Enhance	넊
	EXISTING HIGHER	BENEFICIAL USES	ives	ig	n.by	li oʻ	98	fini.	sin pu	Wile	tsa	luha	Marsh
	QUALITY		X	_	<u> </u>		-	_	<u> </u>		٧	ш	
	Beneficial Uses			X	X	X	X	Х	X	X			
Aquatic Life Species of Concern				Juven	ile an	d adu	lt rain	ıbow	trout	and b	rown	trout	
Temperature - °C		S.V. Nov-Mar ≤ 7							l				
		S.V. Apr ≤ 13							l				
		S.V. May ≤ 17							l				
		S.V. Jun ≤21			*	x			l				
		S.V. Jul ≤ 22 S.V.							l				
		$Aug \le 23$							l				
ΔT ^b - °C	$\Delta T = 0$	S.V. Sep-							l				
Δ1 C	Δ1= 0	Oct $\Delta T \leq 2$											
pH - SU	S.V. 7.2 - 8.3	S.V. 6.5 - 9.0	x	x	x	*		x	x	*			
p11 - 30	3. v. 7.2 - 0.3	$\Delta pH \pm 0.5$	Λ	Λ	Λ			Λ	Λ				
Dissolved Oxygen - mg/l		S.V. Nov-Mar ≤ 6.0	х		*	x	x	x	l	x			
,,,		S.V. Apr-Oct ≤ 5.0			-				\vdash				
Total Phosphates	A-Avg.≤ 0.05	A-Avg.≤ 0.10			*	*	X	Х	l				
(as P) - mg/l				_	_			-	⊢	-	_		
Ortho Phosphates	S.V. ≤ 0.02	S.V. ≤ 0.05			*	*	Х	Х	l				
(as P) - mg/l					_			<u> </u>	├	_	_		
Nitrogen Species	Total N A-Avg. ≤ 0.3	Nitrate S.V. ≤ 2.0			*	*	X	x	l				
(as N) - mg/l	Total N S.V. ≤ 0.43	Nitrite S.V. ≤ 0.04											
Total Ammonia		с			*								
(as N) - mg/l					Ľ								
Suspended	A-Avg.≤ 15.0	S.V.≤ 25			*								
Solids - mg/l	A-Avg.2 15.0	5. V. <u>3</u> 2 3											
Turbidity - NTU	A-Avg. \leq 80.0 S.V.	S.V. ≤ 10			*			х					
Tubkity - IVI C	≤ 9.0	5. V. <u>5</u> 10						Λ	L				
Color - PCU	d	S.V. ≤ 75						*	l				
Total Dissolved	A-Avg. ≤ 80.0			l				*					
Solids - mg/l	S.V. ≤ 95.0	A-Avg.≤ 500	Х	Х				*	l				
Chloride - mg/l	A-Avg. ≤ 7.0												
	S. V. ≤ 10.0	S.V.≤ 250	Х	Х				*	l	Х			
Sulfate - mg/l	A-Avg. ≤ 7.0												
	S. V. ≤ 8.0	S.V.≤ 250						*	l				
Sodium - SAR	A-Avg. ≤ 0.5							\vdash					
	S. V. ≤ 0.6	A-Avg.≤8		*				X	l				
Alkalinity	5. 7. 2 0.0	< 25% change from		\vdash	\vdash			\vdash		\vdash			
(as CaCO3) - mg/1		natural conditions			*				l	X			
E. coli - No./100 ml	1				\vdash			\vdash			\vdash		
E. con - 100./100 ml	1	A.G.M. ≤ 126	l	l		*	Х		I				
	 	S.V. ≤ 410		⊢	<u> </u>		_	<u> </u>	<u> </u>	⊢	<u> </u>		
Fecal Coliform - No./100 ml	A.G.M. ≤ 50.0	S.V.≤ 1000	Х	*			Х	Х	l	х			
	S.V. ≤ 200.0				_			<u> </u>	├	<u> </u>	_		
BOD- mg/l	1	A.G.M. ≤ 2.5	l	l				*	I				
* = The great section time home finish year		S.V. ≤ 3.0											

^{* =} The most restrictive beneficial use.

A-AVG means annual average

NTU nephelometric turbidity units, a measure of turbidity

X = Beneficial use.

a Refer to NAC 445A.122 and 445A.1622 for beneficial use terminology.

b Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the single value

c The ambient water quality criteria for ammonia are specified in NAC 445A.118.

d Increase in color must not be more than 10 PCU above natural conditions.

A.G.Mannual geometric mean

 $[\]Delta T$ change in temperature

PCU platimun cobalt unit, a measure of color

Table 1-4 Standards of Water Quality, Truckee River from Idlewild to E. McCarren Boulevard Bridge (NAC 445a. 1686)

STANDARDS OF WATER QUALITY

Truckee River at East McCarran

		WATER QUALITY					_			1			\neg
			⊢			_			Use				-
PA RA METER	TO MAINTAIN EXISTING HIGHER QUALITY	STANDARDS FOR BENEFICIAL USES	Livestock	Irrigation	Aquatic	Contact	Noncontact	Municipal	Industrial	Wildlife	Aesthetic	Enhance	Marsh
Beneficial Uses			Х	Х	Х	Х	Х	Х	Х	Х			
Aquatic Life Species of Concer	n		J	uveni	le an	d adu	lt rair	ıbow	trout	and	brow	n trou	t.
Temperature - °C		S.V. Nov-Mar ≤ 7											
ΔT ^b - °C	ΔT= 0	S.V. Apr ≤ 13 S.V. May ≤ 17 S.V. Jun ≤21 S.V. Jul ≤ 22 S.V. Aug ≤ 23 S.V. Sep-			*	Х							
		Oct $\Delta T \le 2$ S.V. 6.5 - 9.0	⊢	\vdash	\vdash	⊢	\vdash		\vdash	\vdash	⊢	Н	\vdash
pH - SU	S.V. 7.0 - 8.5	$\Delta pH \pm 0.5$	Х	Х	Х	*		Х	Х	*			
Dissolved Oxygen - mg/l		S.V. Nov-Mar ≤ 6.0 S.V. Apr-Oct ≤ 5.0	х		*	х	Х	Х		Х			
Total Phosphates (as P) - mg/l	A-Avg.≤ 0.05	A-Avg.≤0.10			*	*	Х	Х					
Ortho Phosphates (as P) - mg/l	S.V. ≤ 0.02	S.V. ≤ 0.05			*	*	Х	Х					
Nitrogen Species (as N) - mg/l	Total N A -Avg. ≤ 0.3 Total N S.V. ≤ 0.43	Nitrate S.V. ≤ 2.0 Nitrite S.V. ≤ 0.04			*	*	Х	Х					
Total Ammonia (as N) - mg/l		С			*								
Suspended Solids - mg/l	A-Avg≤ 15.0	S.V.≤250			*								
Turbidity - NTU	A-Avg. ≤ 6.0	S.V. ≤ 10			*			Х					
Color - PCU	d	S.V. ≤ 75						*					
Total Dissolved Solids - mg/l	A-A vg. ≤ 90.0 S.V. ≤ 120.0	A-Avg.≤500	х	Х				*					
Chloride - mg/l	A-A vg. ≤ 7.0 S.V. ≤ 10.0	S.V.≤250	Х	х				*		Х			
Sulfate - mg/l	A-A vg. ≤ 7.0 S.V. ≤ 8.0	S.V.≤250						*					
Sodium - SAR	A-A vg. ≤ 0.5 S.V. ≤ 0.6	A -A vg.≤ 8		*				Х					
Alkalinity (as CaCO3) - mg/l		< 25% change from natural conditions			*					Х			
E. coli - No./100 ml		A.G.M. ≤ 126 S.V. ≤ 410				*	Х						
Fecal Coliform - No./100 ml	A.G.M. ≤75.0 S.V. ≤350.0	S.V.≤ 1000	Х	*			Х	Х		Х			
BOD-mg/l		A.G.M. ≤ 3.0 S.V. ≤ 5.0						*					

^{* =} The most restrictive beneficial use.

A.G.M the annual geometric mean

A-AVG annual average

 ΔT change in temperature

NTU nephelometric turbidity units, a measure of turbidity

PCU platimun cobalt unit, a measure of color

X = Beneficial use.

a Refer to NAC 445A.122 and 445A.1622 for beneficial use terminology.

b Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause

c The ambient water quality criteria for ammonia are specified in NAC 445A.118.

d Increase in color must not be more than 10 PCU above natural conditions.

Table 1-5 Standards of Water Quality, Truckee River from E. McCarren Boulevard Bridge to Lockwood (NAC 445a. 1688)

STANDARDS OF WATER QUALITY Truckee River at Lockwood Bridge

REQUIREMENTS WATER QUALITY Beneficial Use ^a													
	REQUIREMENTS	`		_			Bene			_			
PARAMETER	TO MAINTAIN EXISTING	STANDARDS FOR BENEFICIAL USES	Livestock	Irrigation	Aquatic	Contact	Noncontact	Municipal	Industrial	Wildlife	Aesthetic	Enhance	Marsh
	QUALITY		Ξ.	Ξ	~	0	ž	Σ	Ξ	12	Α	豆	
Beneficial Uses	•		Х	Х	Х	Х	Х	Х	Х	Х			
Aquatic Life Species of Concern			J	uveni	le an	d adu	lt rair	ibow	trout	and	brow	n trou	t
Temperature - °C		S.V. Nov-Mar ≤ 13											
		S.V. Apr ≤21c											
		S.V. May ≤22c,d			*	Х							
		S.V. Jun-Oct ≤ 23c,d											
ΔT ^b - °C	$\Delta T = 0$	$\Delta T \le 2$											
pH - SU	S.V. 7.1 - 8.5	S.V. 6.5 - 9.0 ΔpH ± 0.5	Х	Х	Х	*		Х	Х	*			
Dissolved Oxygen - mg/l		S.V. Nov-Mar ≤ 6.0 S.V. Apr-Oct ≤ 5.0	Х		*	Х	Х	Х		Х			
Total Phosphates (as P) - mg/l		A-Avg.≤ 0.05			*	*	Х	Х					
Nitrogen Species		Total N A-Avg. ≤ 0.75 Total N S.V.≤ 1.2			*	*	х	х					
(as N) - mg/l		Nitrate S.V.≤ 2.0 Nitrite S.V.≤ 0.04					^	Λ					
Total Ammonia (as N) - mg/l		e			*								
Suspended Solids - mg/l	A-Avg.≤25.0	S.V.≤ 50			*								
Turbidity - NTU		S.V. ≤10			*			Х					
Color - PCU	f	S.V. ≤75						*					
Total Dissolved Solids - mg/l	A-Avg. ≤210.0 S.V. ≤260.0	A-Avg.≤ 500	Х	х				*					
Chloride - mg/l	A-Avg. ≤ 26.0 S.V. ≤ 30.0	S.V.≤250	Х	Х				*		Х			
Sulfate - mg/l	A-Avg. ≤ 39.0 S.V. ≤ 46.0	S.V.≤250						*					
Sodium - SAR	A-Avg. ≤ 1.5 S.V. ≤ 2.0	A-Avg.≤ 8		*				Х					
Alkalinity		< 25% change from			*					Х			
(as CaCO3) - mg/l		natural conditions		$ldsymbol{ld}}}}}}$						Λ			
E. coli - No./100 ml		A.G.M. ≤ 126 S.V. ≤ 410				*	Х						
Fecal Coliform - No./100 ml	A.G.M. ≤ 90.0 S.V. ≤ 300.0	S.V.≤1000	Х	*			Х	Х		Х			

^{* =} The most restrictive beneficial use.

A.G.M annual geometric mean

A-AVG annual average

ΔT change in temperature

NTU nephelometric turbidity units, a measure of turbidity

PCU platimun cobalt unit, a measure of color

X = Beneficial use.

a $\,$ Refer to NAC 445A.122 and 445A.1622 for beneficial use terminology.

b Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a

c When flows are adequate to induce spawning runs of cui-ui and Lahontan cutthroat trout, the standard is 14°C from April through June.

 $d\quad \text{The desired temperature for the protection of juvenile Lahontan cutthroat trout is } 21^\circ\!\!C, \text{ even though that temperature is not attainable at all times}.$

e The ambient water quality criteria for ammonia are specified in NAC 445A 118.

f Increase in color must not be more than 10 PCU above natural conditions.

Table 1-6 Standards of Water Quality, Steamboat Creek at Gaging Station (NAC 445a. 1724)

STANDARDS OF WATER QUALITY

Steamboat Creek at the gaging station (Rhodes Road)

REQUIREMENTS TO MAINTAIN EXISTING HIGHER			TO MAINTAIN	WATER QUALITY STANDARDS FOR BENEFICIAL USES					Bene	ficia	1 Use	a e			
PARAMETER	QUALITY		Livestock	Irrigation	Aquatic	Contact	Noncontact	Municipal	Industrial	Wildlife	Aesthetic	Enhance	Marsh		
Beneficial Uses			Χ	Х	Х	Х	Х	Х	Х	Х					
Aquatic Life Spec	cies of Concern		L												
Temperature - °C		S.V. ≤ 34			*	X									
ΔΤ ⁶ - °C		$\Delta T \leq 3$													
pH - SU		S.V. 6.5 - 9.0	Х	Χ	*	*		X	Χ	*					
Dissolved Oxygen - mg/l		S.V. ≥ 5.0	Х		*	Х	х	х		Х					
Total Phosphorus (as P) - mg/l		S.V. ≤ 0.33			*	*	х	х							
Total Ammonia		с			*			x							
(as N) - mg/l			Н	_	\vdash	├	_				\vdash	\vdash	Н		
Total Dissolved Solids - mg/l		≤ 500 or the 95th percentile S.V. (whichever is less).	х	Х				*							
E. coli - No./100 ml		A.G.M. ≤ 126 S.V. ≤ 410				*	Х								
Fecal Coliform - No./100 ml		S.V. ≤1,000	Х	*			Х	Х		Х					

Table 1-7 Standards of Water Quality, Steamboat Creek from USGS Gaging Station 10349300 to Confluence with Truckee River (NAC 445a. 1726)

STANDARDS OF WATER QUALITY

Steamboat Creek at Truckee River

													_
	REQUIREMENTS	WATER	Beneficial Use ^a										
PARAMETER	TO MAINTAIN EXISTING HIGHER QUALITY	STANDARDS FOR BENEFICIAL USES	Livestock	Irrigation	Aquatic	Contact	Noncontact	Municipal	Industrial	əJilbliW	Aesthetic	Enhance	Marsh
Beneficial Uses			Χ	X	Х	Х	X	Х	Х	X			
Aquatic Life Species of Concern			Juvenile and adult rainbow trout and brown trout.										
pH - SU		S.V. 6.0 - 9.0	X	Х	*	Х		Χ	Х	*			
Dissolved Oxygen - mg/l		S.V. ≤ 3.0	X		*	Х	Х			X			
Total Ammonia (as N) - mg/l		ъ			*								
E. coli - No./100 ml		A.G.M. ≤ 126 S.V. 576				*	Х						

^{* =} The most restrictive beneficial use.

A.G.M the annual geometric mean

A-AVG annual average

X = Beneficial use.

a Refer to NA C.445A 122 and 445A 1622 for beneficial use terminology

b The ambient water quality criteria for ammonia are specified in NAC 445A.118.

Table 1-8 Standards of Water Quality, Whites Creek below Steamboat Ditch (NAC 445a. 1758)

STANDARDS OF WATER QUALITY Whites Creek at Steamboat Creek

					Bene	eficial	Use ^a						
PARAMETER	TO MAINT AIN EXISTING HIGHER QUALITY	ST ANDARDS FOR BENEFICIAL USES	겆	Irrigation	Aquatic	Contact		Municipal		Wildlife	Aesthetic	Enhance	Marsh
Beneficial Uses			Х	X	Х	Х	X	Х	Х	Х			
Aquatic Life Species of Concern				Juven	ile an	d adu	lt rair	ibow	trout	and b	rown	trout	-
Temperature - °C ΔT ^b - °C		S.V. ≤ 24 $\Delta T = 0$			*	Х							
pH - SU		S.V. 6.5 - 9.0	X	X	*	*		X	X	*			
Dissolved Oxygen - mg/l		S.V. ≤ 5.0	Х		*	Х	Х	Х		Х			
Total Phosphates (as P) - mg/l		S.V. ≤ 0.10			*	*	Х	х					
Total Ammonia (as N) - mg/l		С			*			х					
T otal Dissolved Solids - mg/l		S.V. ≤ 500 or the 95th percentile (whichever is less)	Х	X				*					
E. coli - No./100 ml		A.G.M. ≤ 126 S.V. ≤ 410				*	Х						
Fecal Coliform - No./100 ml		S.V.≤ 1000	х	*			Х	Х		Х			

^{*} = The most restrictive beneficial use.

A.G.M the annual geometric mean

A-AVG annual average

 ΔT change in temperature

S.V. single value

For water bodies listed as impaired, states must assess the amount of pollution that a water body can receive without violating water quality standards. That amount of pollution is termed a Total Maximum Daily Load (TMDL). Loads are then allocated among the different sources, including point sources, non-point sources, and natural or background sources (Stantec, 2011). In 1994, TMDLs for the Truckee River were established for three different constituents: total nitrogen (Total-N), total phosphorus (Total-P), and total dissolved solids (TDS) (Table 1-9). The control point for these constituents is the Truckee River at Lockwood (see Figure 1-2). Sampling and analysis of waters in the Truckee River at Lockwood is not a component of this monitoring program but is conducted by the Truckee Meadows Water Reclamation Facility (TMWRF) and

X = Beneficial use.

a Refer to NAC 445A.122 and 445A.1622 for beneficial use terminology.

b Maximum allowable increase in temperature above water temperature at the boundary of an approved mixing zone, but the increase must not cause a violation of the

c The ambient water quality criteria for ammonia are specified in NAC 445A.118.

results are available on the Truckee River Information Gateway (TRIG; http://truckeeriverinfo.org/). Three constituents with TMDLs and other constituents of concern are measured under this stormwater monitoring program at urban outfalls and tributaries to the Truckee River to better understand the quality of waters entering the Truckee River (receiving waters) from Truckee Meadows. Possible revisions to these TMDLs are currently under review by NDEP.

Table 1-9 Total Maximum Daily Loads (TMDLs), Truckee River at Lockwood

Total Maximum Daily Load	Total Nitrogen	Total Phosphorus	Total Dissolved Solids
Point of Compliance	lbs/day	lbs/day	lbs/day
	TMDL		
Truckee River at Lockwood	1,000	214	900,528
Non-Point S	ource or Load	Allocation	
Truckee River at Lockwood	500	80	780,360

2 SAMPLING AND ANALYSIS PLAN (2017) AND ADDENDUMS

Every year, a revised Sampling and Analysis Plan (SAP) is submitted to the NDEP and outlines the sampling program and approach, including locations of sampling, the stormwater sampling activities to be conducted, and lists of constituents for laboratory analysis. During implementation of the SAP, field realities often necessitate minor modifications to the SAP before a revised SAP can be completed. These revisions are documented in the annual report and/or as addenda to the SAP.

2.1.1 SAMPLING AND ANALYSIS PLAN

In FY2018, Balance conducted the monitoring program based on the 2017 SAP, dated November 2017 (Trustman and others, 2017). The SAP identifies two different sampling activities: (1) scheduled, non-rain event, tributary baseflow sampling; and (2) unscheduled stormwater sampling. The 2017 SAP identifies 16 monitoring stations, including 12 tributary monitoring stations on 9 tributaries that require both scheduled baseflow sampling and unscheduled storm event sampling, and 4 urban outfall monitoring sites that require only unscheduled, storm event sampling.

All four urban outfalls and three selected tributaries utilize near-continuous streamflow gages and automated samplers to collect multiple samples across a given storm runoff event to characterize constituent loading to the Truckee River. Also, in FY2018, in accordance with the 2017 SAP, Balance continued to operate additional streamflow gaging stations on three tributaries to the Truckee River (Chalk Creek, Alum Creek, and Thomas Creek), while Truckee Meadows Water Authority (TMWA) operates and maintains a streamflow gaging station on Whites Creek. Streamflow data helps quantify stormwater runoff volumes and calculate instantaneous loading rates at these stations.

2.1.2 Special Study: Baseflow Sampling and Analysis from Two Main Tributaries

Steamboat Creek and North Truckee Drain have been identified as key sources of excess nutrients to the Truckee River (Shump, 1985, Romeis, 1999, and Hastings and Shaw, 2015). Baseflow water quality data was limited. Therefore, and as part of the objectives (Objective #4) of this program, Balance conducted a special study to evaluate baseflow selected constituent loading from these two tributaries since WY2016. In FY2018, Balance continued to operate automated samplers, co-located at USGS streamflow gaging stations, to measure baseflow constituent loading over a 24-hour period to the Truckee River from these two main tributaries. Results are described in this report and fulfill the ambient monitoring requirements of this program.

2.2 Constituents of Concern

The 2017 SAP identifies the following constituents of concern:

- Total nitrogen (Total-N),
- Nitrate as nitrogen (NO₃),
- Total Kjeldahl nitrogen (TKN),
- Total phosphorus (Total-P),
- Ortho-phosphate (Ortho-P),
- Total dissolved solids (TDS),
- Total suspended solids (TSS),
- Total Escherichia coli bacteria (E. coli), and
- Standard physical parameters including: water temperature, turbidity, pH, dissolved oxygen (DO), and specific conductance (SC).

Other forms of nitrogen include nitrite as nitrogen (NO₂) and ammonia as nitrogen (NH₃) are also presented. Below, we define and briefly discuss the importance of these parameters as they relate to stormwater in the Truckee Meadows.

2.2.1 NITROGEN AND PHOSPHORUS

Nitrogen and phosphorus are the principal constituents of concern in urban stormwater. The major sources of these nutrients in urban stormwater are urban landscape runoff, atmospheric deposition, animal waste, improperly functioning septic systems, and/or undertreated wastewater returned to the river (Terrene Institute, 1996). The degree to which nitrogen and phosphorus are present in a river can affect the trophic status and amount of algal biomass produced. Excess nutrients tend to increase primary biological productivity, which in turn cause algal blooms. A secondary impact is the residual negative effects of decomposing algae, which depletes dissolved oxygen concentrations necessary to support other aquatic life (USEPA, 1999).

There are several forms of nitrogen and phosphorus found in stormwater runoff. Total-N includes four forms including NO₃, NO₂, NH₃, and ammonium (NH₄). NO₃ and NO₂ are the inorganic fractions of nitrogen. NO₂ is uncommon in stormwater because it can quickly

transform to NO_3 by bacteria. NO_3 is stable over a considerable range of conditions and is readily transported in water. NO_3 is highly toxic to humans and fish at high concentrations and long exposure. NH_3 is more volatile and is quickly converted to NO_2 and NO_3 through oxidation, but usually is the most readily toxic to aquatic life. NH_3 typically reacts or dissolves in water to also form NH_4 at neutral pH levels (i.e., near 7). NH_4 is strongly adsorbed on mineral surfaces or soil particles, therefore, can be easily transported by sediment in the water (Hem, 1985).

TKN is a measure of the total concentration of organic nitrogen and ammonia. TKN is a good indicator of forms of nitrogen most biologically available to aquatic life. Sources of nitrogen in surface waters include both residential and agricultural fertilizers, septic tanks, leaking sewer lines, and leach fields. Unsanitary disposal of human and pet excrement are also common sources in urban areas and are frequently observed in the Truckee Meadows urban areas.

Total-P is a measure of both organic and inorganic forms of phosphorus. Ortho-P is commonly present in stormwater and the fraction of Total-P that is most immediately biologically available to aquatic life (Hem, 1985). Sources of phosphorus in surface waters include the natural weathering and erosion of local bedrock, especially areas underlain by igneous rocks (e.g., granodiorite, volcanic rocks). Erosion of areas with current (e.g., construction) or historical disturbance (e.g., mining) can exacerbate the concentrations of phosphorus in stormwater. Other sources may include sewage and household detergents, runoff from fertilized lawns and cropland, runoff from animal manure storage areas, drained wetlands, decomposition of organic matter, and commercial cleaning preparations.

2.2.2 SUSPENDED AND DISSOLVED SOLIDS

TSS is a measure of both organic and inorganic solids suspended in the water column, whereas TDS is a measure of all inorganic and organic substances dissolved in the water column (Hem, 1985). Both TSS and TDS have been reported to increase in waters that receive urban stormwater. Their concentrations originate from many sources including erosion of pervious surfaces, dust, litter, other particles deposited on impervious surfaces from human activities, sediment runoff at construction sites, and streambank erosion (Burton and Pitt, 2002).

Elevated TSS and TDS concentrations increase turbidity, reduce light penetration in streams, and limit the growth of desirable aquatic plants. TSS can settle in backwater

areas or in the main channel during periods of low flow and can alter or impair aquatic habitat and aquatic life. TSS can also provide a medium for accumulation, transport, and storage of other pollutants including nutrients and metals (USEPA, 1999).

Although TSS and TDS are not typically associated with human health effects, they are used as aesthetic indicators as well as aggregate indicators of the presence of chemical contaminants. Concentrations can also be naturally elevated from natural erosion of geologic sources. For instance, naturally high sulfates are found in the Chalk Creek watershed and commonly are a source of high TDS concentrations. Increases over background TSS and/or TDS may originate from agricultural and residential runoff as well as point-source pollution discharge from industrial and sewage treatment plants. Most aquatic ecosystems can tolerate TDS levels of 1,000 mg/L (Boyd, 1999).

2.2.3 PATHOGENS

Pathogens are disease-producing organisms that present a potential public health threat when they are present in waters (USEPA, 1999). Pathogens typically originate from warm-blooded animal excrement which can include wild animals, urban animals (e.g., pigeons, raccoons, crows, dogs), or humans (i.e., raw sewage spills). Direct exposure to pathogens in stormwater is usually limited; however, when runoff is discharged to recreational waters such as the Truckee River, there is a potential public health risk. Runoff can contain many different pathogens that cannot be measured directly; therefore, indicator organisms such as E. coli are used to predict the health risks (NDEP, 2012). High counts of bacteria may not necessarily confirm the presence of pathogens but provides an indicator for risk. In this report, bacteria measured is reported in units of Most Probable Number (MPN) per 100 mL of water.

2.2.4 OTHER PHYSICAL PARAMETERS

Standard physical parameters provide additional context for stormwater quality and conditions relative to receiving waters. In addition, NDEP has water quality standards for physical parameters including temperature, dissolved oxygen, and pH for the Truckee River and listed tributaries (NAC 445a.).

Water temperature in an important measure of water quality and the Truckee River is listed as impaired for water temperature (NDEP, 2016). Specifically, water holds less oxygen as it becomes warmer, resulting in less oxygen available for respiration by aquatic organisms (USEPA, 1999). Stormwater runoff from high-temperature impervious surfaces

can increase water temperature in the river or receiving waters and impair trout species (Jones and others, 2007).

Dissolved oxygen (DO) concentration is a measure of the amount of oxygen dissolved in water. DO is critical to biological organisms and fish. High DO levels in streams are needed to sustain the more sensitive biological organisms (MacDonald and others, 1991). Low DO levels are commonly associated with point source pollution or decomposing organic matter in the water column. Urban stormwater typically has low to moderate levels of DO but commonly increases when diluted in receiving waters. As mentioned earlier, decomposing algae—from increased nutrient loads—can deplete DO concentrations to the point where aquatic life is affected. Waters rich in algae (eutrophic) can register wide swings in DO concentrations between algae respiration at night and photosynthesis during daylight hours. Wide diurnal fluctuations can stress aquatic life more than constant low DO concentrations.

Most aquatic ecosystems are also sensitive to variations in pH. Most pH impacts in urban waters are caused by runoff of rainwater with low pH levels (USEPA, 1999) or rapid changes in water temperatures (i.e., runoff heated by sun-warmed asphalt). Urban and industrial areas tend to have more acidic rainfall than less developed areas. Additionally, high pH levels can be caused by eutrophication or abundance of nutrients in waters.

Specific conductance (SC) of waters refers to the ability of water to conduct an electrical current and is related to the concentration of dissolved solids. SC indicates the quantity of dissolved ions in the water and can also be used as a proxy for salinity. While there are no recommended water quality criteria for conductivity, it can be used as a surrogate for other dissolved ions. SC can exhibit a wide range if waters move through areas of differing geology. Waters that drain granitic and/or volcanic rocks tend to have a very low SC (< 400 μ S (micro Siemens). Alternatively, waters that drain marine sedimentary rocks (i.e., Chalk Creek) or geothermal areas (i.e., Steamboat Creek) will typically have a much higher SC (>2,000 μ S). The acceptable range for fresh water fish is between 100 and 2,000 μ S (MacDonald and others, 1991).

3 STORM MONITORING STATIONS

The FY2018 stormwater monitoring program includes a total of 16 monitoring stations per the 2017 SAP: 12 tributary stations, and 4 stormwater urban outfall stations. Locations of monitoring stations, rain gages, and streamflow gages used for this monitoring program are shown in **Figure 3-1**. **Table 2-1** describes the characteristics of the sites and their drainage areas, including land-uses, constituents of concern, instrumentation, comments, and known existing studies. We have used information summarized in recent watershed assessments, special studies, zoning maps from Washoe County, stormwater system maps from Cities of Reno and Sparks, aerial imagery available on Google Earth®, and field observations to establish the drainage areas for each monitoring station.

3.1 Tributary Stations

The 2017 SAP assigns 12 monitoring stations to 8 tributaries. Two of the largest tributaries to the Truckee River in the Truckee Meadows, Steamboat Creek and North Truckee Drain, have more than one monitoring station at different locations along the mainstem of each stream, allowing for evaluation of possible water-quality degradation from specific subwatersheds.

Delineation of drainage areas for tributary monitoring stations is confounded in many cases by irrigation ditches that divert waters from the Truckee River upstream of the Truckee Meadows, receive stormwater runoff from intervening areas, then discharge water to other tributaries, or 'tailwaters,' at 'tailouts' and may affect water quality in the receiving tributary. Although water quality of tailwaters has not been investigated as part of this study, awareness of this confounding factor is required during interpretation of hydrology and water quality at affected monitoring sites. **Table 3-2** lists the locations where tailouts exist or where irrigation ditches can discharge to tributaries. These locations are also identified in **Figure 3-1**.

3.2 Stormwater Outfall Stations

The 2017 SAP identifies 4 stormwater urban outfalls as monitoring stations, each with a pre-designated code (e.g., D-16). Stormwater quality from discharge at these outfalls can affect water quality and beneficial uses in receiving waters of the Truckee River. Analysis of water quality from stormwater outfalls provides a perspective on the concentrations and loading from these point sources and can also be compared to water quality from monitored tributaries.

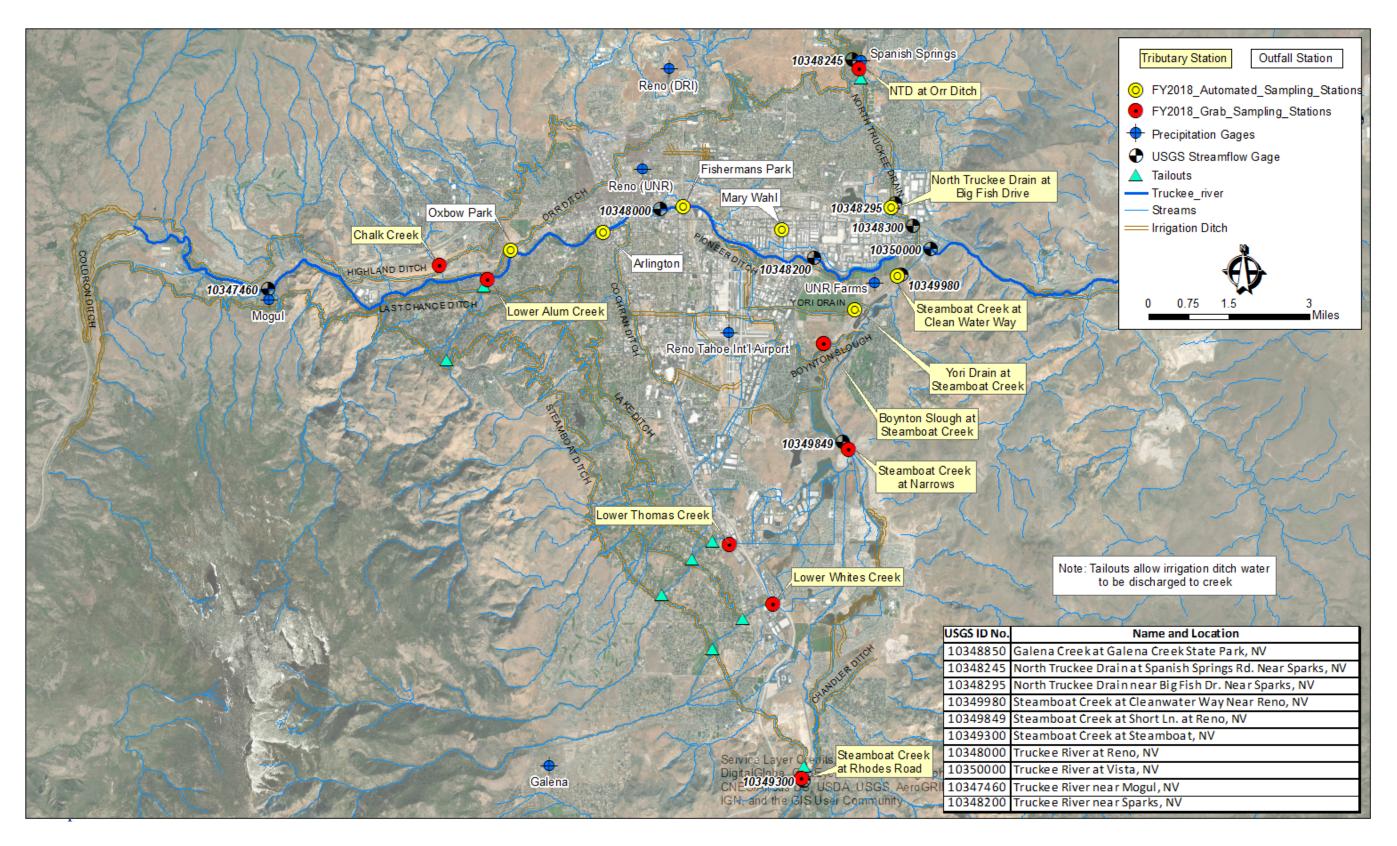


Figure 3-1 Truckee Meadows Stormwater Monitoring Stations, Streamflow Gaging Stations, Rain Gages, and Station Equipment, FY2018

Balance Hydrologics, Inc.

Table 3-1 Monitoring Location Descriptions, Truckee Meadows Stormwater Monitoring Program, FY2018

Monitoring Station Name	Station ID	Watershed	Watershed Area (mi²)	Primary Land-Uses	Instrumentation	Comments	Existing Studies	
Tributaries								
Chalk Creek at Chalk Bluff	CC@CB	Tributary to Truckee River	4.6	Upper watershed is undeveloped; lower watershed is residential; I-80 and some commercial	Balance gaging station	Watershed includes geology of the Hunter Creek Formation: diatomaceous fine sandstone or "chalk" and lacustrine deposits which bear high concentrations of sulfates	JBR Environmental, 2010	
Lower Alum Creek at Truckee River	AC@TR	Tributary to Truckee River	4.9	Residential, commercial, open space	Balance gaging station	Watershed geology includes Hunter Creek Formation, hydrous aluminum sulfates. 2007 Hawkin Fire burned 1,000 acres in upper watershed; artifical irrigation ponds provide some flood detention; Steamboat Ditch discharges to creek at times.	Fennema, 2013; Jesch 2008 and 2011	
North Truckee Drain at Orr Ditch	NTD@ORD	Tributary to Truckee River	76.1	agriculture, residential, and commercial	USGS gaging station 10348245	Receives return flows from irrigation ditches; drains much of Spanish Springs Valley; part of USACE flood control project	Jesch, 2005	
Thomas Creek at S. Meadows Pkwy	TC@SMP	Tributary to Steamboat Creek	18.5	Mixed residential and commercial, some small agriculture, golf course, new construction	Balance gaging station	Lower portions of creek are conveyed via concrete or lined flood control channels, culverts and ditches;	Jesch, 2011, Curtis, 2013	
NF Whites Creek at Old Virginia Hwy	WC@OVH	Tributary to Steamboat Creek	18.5	urban (mixed commercial and residential); new construction; open space in upper watershed	Washoe County gaging station	Additional 303(d) listed constituents for downstream reaches; channel is actively eroding in segments and increasing with increased urbanization of watershed	Jesch, 2011	
Steamboat Creek at Rhodes Road	SBC@RHR	Tributary to Truckee River	123	Rural residential; major roads, historic gold and silver mining; geothermal operations	USGS gaging station 10349300	Washoe Lake located short distance upstream	Parametrix and Wenk Associates, 2007; Codega, 1998	
Steamboat Creek at Narrows	SBC@NAR	Tributary to Truckee River	192	Mixed residential-commercial, major roads, agriculture, historic gold and silver mining; geothermal operations, new construction	USGS gaging station 10349849	Downstream from hot springs and geothermal operations; channel in poor condition; Southeast Connector construction completed spring 2018	Parametrix and Wenk Associates, 2007; Codega, 1999	
Boynton Slough at Steamboat Creek	BS@SBC	Tributary to Steamboat Creek	48.5	Upper watershed is open space; lower:mixed residential-commercial, agriculture, golf courses, historical mining, geothermal operations, new construction, airport, major roadways	Balance staff plate	Upper watershed includes open space from Mt. Rose; Lower section captures a large amount of urban runoff from South Reno, including outflow from Virginia Lake via Dry Creek	City of Reno, 2016 (Virginia Lake)	
Yori Drain @ Steamboat Creek	YD@SBC	Tributary to Steamboat Creek	4.2	Mixed residential-commercial, agriculture, golf courses, historical mining, geothermal operations, new construction, airport, major roadways	ISCO automated sampler and area- velocity module	Drains portions of urban Reno including Mill Street west to Renown Hospital, UNR Farms.; Receives Truckee River water from Pioneer Ditch; last portion of Yori Drain is directly connected to engineered overflow wetlands adjacent to the Southeast Connector	Kennedy Jenks Consultants, 2004	
Steamboat Creek at Clean Water Way	SBC@CWW	Tributary to Truckee River	244	Mixed residential-commercial, major roads, agriculture, golf courses, historic mining; geothermal operations, new construction, Reno-Tahoe Airport	USGS gaging station 10349980	Southeast Connector construction completed spring 2018	RTCWC, 2013; Parametrix and Wenk Associates, 2007; Codega, 2000	
Stormwater Urban Outfalls								
Island at Arlington	H-19	Outfalls to Truckee River	0.32	Residential (single family), commercial with urban landscaping	ISCO automated sampler and areavelocity module	One of the oldest neighborhoods in Reno; most homes built before 1940; possible cross connections with domestic sewer lines; sampling location is an outfall directly to Truckee River	n/a	
Fisherman's Park II	D-16	Outfalls to Truckee River	5.1	Mixed residential, commercial, industrial and some agriculture, major roadways, UPRR and new construction	ISCO automated sampler and area- velocity module	Area drains portions of University of Nevada-Reno, Nevada State Fair Grounds, U.S. Agriculture Research Services; sampling location is an outfall directly to the Truckee River	n/a	
Oxbow Nature Park	C-24	Outfalls to Truckee River	0.36	Residential (single family and multi-family units), commercial and urban landscaping	ISCO automated sampler and area- velocity module	Drainage area is 100 percent built out with an estimated 85+ percent impervious surface; access is via a storm drain manhole cover approximately 400 feet from outfall to the Truckee River	n/a	
Mary Wahl Drain	SDOE-008936	Outfalls to Truckee River	2.5	Mixed residential, commercial, industrial and some agriculture, major roads, UPRR and new construction	ISCO automated sampler and areavelocity module	Recently enclosed in a concrete box culvert (December, 2014); culvert accumulates sediment; sampling location is a manhole roughly 750 feet upstream of the outfall to the Truckee River	n/a	

26 Balance Hydrologics, Inc.

Table 3-2 Tributary Monitoring Sites Receiving Tailwaters from Irrigation Ditches

Irrigation Ditch	Monitoring Sites that Receive Tailwaters					
Steamboat Ditch	Alum Creek at Truckee River Thomas Creek at S. Meadows Parkway Whites Creek at Old Virginia Highway					
	Steamboat Creek at Narrows and Clean Water					
Last Chance Ditch	Alum Creek at Truckee River					
	Thomas Creek at S. Meadows Parkway					
	Whites Creek at Old Virginia Highway					
Lake Ditch	Thomas Creek at S. Meadows Parkway					
	Alum Creek at Truckee River					
Orr Ditch	North Truckee Drain at Orr Ditch					
	North Truckee Drain at Kleppe Lane					
Cochrane Ditch	Steamboat Creek at Clean Water Way					
	Boynton Slough at Steamboat Creek					
Pioneer Ditch	Yori Drain at Steamboat Creek					

Notes: See Figure 3-1 for locations of ditches and diversions to tributaries.

4 STORM MONITORING PROGRAM METHODS

This chapter describes the sampling equipment and methods used to collect water quality samples, measure and gage discharge or streamflow, and measure physical parameters of stormwater.

4.1 Types of Equipment

Table 4-1 lists the field parameters measured, instruments used, and the resolution and accuracy of each instrument.

Table 4-1 Instruments Used to Measure Water Quality, Runoff and Physical Parameters during Storm Events

Parameter	Parameter Units		Range	Accuracy	Calibration	Comments		
Velocity	ft/s	Hach velocity meter	-0.5 to +20	+/- 2%	Factory	Used for calculation of instantaneous discharge rate		
Velocity	ft/s	Teledyne-ISCO 750 AV module	-5 to +5	+/- 1%	Factory	Measures near-continuous velocity; used for calculation of discharge volume		
Velocity	ft/s	Bucket-wheel meter	0.2 to 25	+/- 2%	Manual	Used for calculation of instantaneous discharge rate		
Depth	ft	Teledyne-ISCO 750 AV module	0.03 to 5.0	+/- 0.008	Factory	Measures near-continuous depth; used for calculation of discharge volume		
Water Temperature	deg. C	YSI-Professional Plus	-5 to +70	+/- 0.2	Manual			
Conductance	μS	YSI-Professional Plus	0 to 200,000	+/- 0.5%	Manual	Four electrode cell		
Specific Conductance	μS at 25 deg. C	YSI-Professional Plus	0 to 200,000	+/- 0.5%	Manual	Four electrode cell		
Dissolved Oxygen	mg/L, %	YSI-Professional Plus	0-500 %	+/- 2%	Manual	Polarographic		
рН		YSI-Professional Plus	0 to 14 units	+/- 0.2	Manual	Glass combination electrode		
Turbidity	NTU	HF Scientific-Micro TPW	0 to 1,100	+/- 2%	Manual	EPA Method 180.1		

4.2 Sampling Procedures

Stormwater samples were collected using a variety of methods depending on the site and instrumentation. Samples collected at automated sampling stations used either time-interval or flow-interval techniques to automatically fill discrete sample bottles over the duration of the storm hydrograph. This method is further described in **Section 4.4**, below; other sites require grab samples. Unless otherwise noted, grab samples were collected using a clean, triple-rinsed container, and were collected, composited, and mixed to fill laboratory-required volumes and laboratory-supplied bottles.

When site conditions permitted, Balance staff used a hand-held DH-48 sampler with a 1/4-inch nozzle, as adopted by the Federal Interagency Sedimentation Project (FISP), to

capture a depth-integrated sample of water across the width of an open channel or pipe. Water samples were collected using the Equal Transit Rate (ETR) method such that each sample was collected by raising and lowering the sampler at a number of equally-spaced verticals across the stream channel or pipe; collection in each vertical was integrated across the full depth of the water column; and a constant transit rate was maintained while raising and lowering the equipment until the sample bottle was just less than full (Edwards and Glysson, 1999). Water samples were typically collected from between three and eight verticals, and each vertical was executed within 5 to 15 seconds, for a total of approximately 30 to 60 elapsed seconds per sample.

All storm samples collected during an event were delivered to Alpha Analytical Laboratory in Sparks, Nevada under Chain-of-Custody (COC) procedures.

Baseflow or ambient samples were delivered to the Truckee Meadows Water Reclamation Facility (TMWRF) Laboratory under COC by City of Reno staff. Sample processing and procedures were completed as outlined in the 2015 SAP.

4.3 Streamflow/Discharge Gaging

Under this program, Balance operates and maintains 5 streamflow gaging stations using standard hydrologic practices. The primary purpose of the gaging stations is to record near-continuous streamflow and quantify constituent loading during sampled storm events. Secondarily, annual runoff volume is computed to compare relative quantities across tributaries to the Truckee River for context of potential constituent loading each year. Four stations are equipped with Type C staff plates that indicate water stage and In-Situ® pressure transducers that record water pressure depth every 3 minutes and averages them into 15-minute data records. Near-continuous records of water pressure depth are converted to stage (in feet) and calibrated with each observation. Manual measurements of streamflow are completed over a range of stages to develop a stage-to-streamflow rating curve. The rating curve is used to convert the near-continuous record of stage to a near-continuous record of streamflow. If channel conditions suggest a change in the stage-to-streamflow rating curve, a stage shift is applied when appropriate.

A fifth gaging station is located within a culvert or pipe (Yori Drain) and equipped with a ISCO 750 velocity-area module. The module records velocities and water depths every 10 seconds and averages them into 5-minute near-continuous records. The ISCO program converts water depths into a cross-sectional area using a known culvert

diameter and calculates discharge or streamflow using the Continuity Equation (flow = area x velocity). As a check on the velocity-area, in-program calculation, a secondary computation of discharge is also computed using a standard pipe flow equation with the near-continuous water depth data and manual measurements of pipe diameter and slope.

While every effort is made to collect near-continuous, accurate data, we identify the following possible limitations of this program and gaging in urban systems:

- Site visits may be limited to less than 6 times per year and may not document some changes in conditions that affect flow (e.g., channel erosion, sediment or garbage accumulation in a culvert, vandalism, stream depths that are lower than instrument sensor, etc.).
- Some gaging stations are near confluences with larger tributaries or the Truckee River and therefore backwatering can occur. Efforts are made to identify periods of backwatering and replace erroneous data with periods of estimated streamflow or discharge.
- The gaging program is not intended to be used to quantify flood magnitude, frequency or recurrence intervals. Oftentimes urban flooding generates unsafe conditions to access the gage. Moreover, while stormwater can cause flooding, not all flood waters are stormwater and sampling floodwaters may be inappropriate for the purposes of this program.

4.4 Manual Streamflow/Discharge Measurements

Balance utilized standard streamflow equipment and practices appropriate for the conditions encountered in the field (Carter and Davidian, 1968). Discharge was measured or estimated each time stormwater was sampled. A digital velocity meter was used to measure velocity and compute instantaneous stormwater discharge in closed stormwater systems (i.e., pipes) accessed by a manhole, whereas a pygmy, standard Price AA (bucket-wheel) meter or a digital velocity meter was used in open channel systems. The Mid-Section Method for computing cross-sectional flow area using multiple verticals and the Six-Tenths-Depth Method for computing mean velocity at each vertical were used (Turnipseed and Sauer, 2010). A minimum of 2 verticals were used to measure velocity in a pipe. A minimum of 4 verticals were used to measure channel depth and velocity in open channels. The total number of verticals was established based on how quickly water depth was changing. Each open channel monitoring station includes a staff plate, which allowed for a consistent datum to be used for stage readings. The

cross-sectional area of the pipe or open channel was then multiplied by the velocity measured at the cross-section to compute an instantaneous discharge. Streamflow estimates were completed using measured flow widths (feet) and depths (feet) and measurements of surface velocity using a float's movement across a known distance with a stopwatch (feet/sec).

4.5 Automated Sampling and Discharge Computation

In FY2018, Balance operated and maintained Teledyne-ISCO® 6712 automated samplers at 7 Stations (4 stormwater urban outfall stations and 3 tributaries):

- 1. Arlington (station code: H-19);
- 2. Oxbow Nature Park (station code: C-24);
- 3. Fisherman's Park II (station code: D-16);
- 4. Mary Wahl Drain (station code: SDOE-008936);
- Yori Drain at Steamboat Creek (YD@SBC);
- 6. North Truckee Drain at Big Fish Drive (NTD@BFD); and
- 7. Steamboat Creek at Clean Water Way (SBC@CWW).

Automated samplers at 5 of these stations (1-5) are equipped with ISCO® 750 area-velocity module, which allows for computation of discharge rates and discharge volume for the duration of sampled events. Automated samplers were programmed to measure stormwater depth and velocity every 5 minutes and initiate sampling once an increase in flow was detected.

Rainfall depth-runoff volume rating-curves were established at each stormwater urban outfall in an effort to use flow-weighted sampling techniques—such that samples are automatically collected at intervals of equal runoff volume. Harmel and others (2003) note that flow-weighted sampling best represents storm loads because a greater number of samples are collected at higher flow rates.

The Yori Drain station (5) hydrology is complicated by the fact that it can receive a significant volume of discharge from the Truckee River via the Pioneer Ditch. These discharges are not based on precipitation but are controlled by diversion operations. As such, flow-weighted sampling is not possible and time-weighted sampling is performed.

The 2 remaining stations (6 and 7) included automated samplers co-located with USGS stream gages and programmed for time-weighted sampling. Samples were collected at equal time intervals based on the anticipated duration of the storm-runoff event. Time intervals ranged between 30 minutes and 2 hours, and often times were changed to a more or less frequent interval to accommodate changes in the event and appropriately characterize stormwater quality.

Following each sampling event, the storm hydrograph and timing of sample collection was examined at all automated sampling stations in order to evaluate which samples best captured different portions of the storm hydrograph. Discrete samples were composited into 4 final samples, each representing a component of the hydrograph: 1) first flush, 2) rising limb, 3) peak discharge, and 4) falling limb. Composites were used to fill laboratory-provided bottles and delivered to the laboratory in accordance with the 2015 SAP. Physical water quality parameters were measured directly² from the source upon readying the sampler and upon retrieving samples.

4.6 Calculation of Constituent Loads and Yields

Constituent concentrations from grab samples only provide limited information on the range of concentrations in a single storm event for a given location. We know from the collection of grab samples over an entire hydrograph for a single event, concentrations can range from one to three orders of magnitude, depending on the constituent. Ultimately, the grab sample or 'snapshot' approach leaves many gaps in characterization of the system (McKay and others, 2013). Instantaneous discharge measured at the time of sample collection can improve our knowledge because it provides a measure of instantaneous load; however, without information about the range of likely concentrations over a runoff event or season, this technique provides limited information.

Calculation of constituent loads for a given event is a key objective for many non-point source monitoring projects and is usually a more meaningful indicator than constituent concentration. Constituent loads are a measure of mass transported over time, and can

_

² Efforts are made to measure physical water quality parameters directly from the runoff source; however, runoff may not be active at some locations (e.g., urban outfalls) upon each site visit (e.g., processing samples from an automated sampler). In these cases, parameters are measured directly from the composited samples; however, some measures may not be representative of the runoff source due to the residence time of the samples in the sampler.

TRUCKEE MEADOWS STORMWATER MONITORING FY2018 ANNUAL DRAFT REPORT

only be calculated when both the constituent concentration (mass/volume of water) and discharge (volume of water/time) are known:

Load (lbs.) = stormwater discharge volume (cubic feet) x concentration (mg/L) x conversion coefficient

Once loads are calculated, they can then be compared to TMDLs established for the Truckee River.

4.7 Quality Assurance and Quality Control

The 2017 SAP outlines a quality assurance and quality control (QA/QC) project plan. Balance followed this plan using a combination of field quality control activities and data assessment and validation techniques during the monitoring program. Field quality control activities included: a) assigning a minimum of one senior and experienced staff to each field team, both members of which are trained in stormwater sampling procedures and streamflow or discharge measurements; b) adherence to approved methods and procedures; c) pre- and post-event calibration of field equipment and instruments; d) field collection and analysis of duplicates and bottle blanks, and; e) complete documentation of sampling and observations.

In some cases, laboratory results indicated a 'non-detect' for constituents common in stormwater or were measured below the laboratory's reporting limits. If we suspected concentrations to be present, but below the laboratory reporting limits, we requested the measured values from the laboratory (often referred to as J-values or the respective note number or ID in the laboratory report).

All site visits, staff present, and observations were documented in observer logs and are provided in **Appendix A**. All field equipment and instruments were calibrated before and after each storm and records of calibrations are provided in **Appendix B**.

Separately, Balance designated a staff member who was not involved with the field activities to perform a review of all collected data, calculations, and laboratory results, in accordance with the Quality Assurance and Quality Control (QA/QC) procedures in the 2017 SAP.

TRUCKEE MEADOWS STORMWATER MONITORING FY2018 ANNUAL DRAFT REPORT

4.8 Deviations from the Sampling and Analysis Plan

Weather conditions, hydrologic response, time of day, and/or need for expediency occasionally required deviations from procedures set forth in the 2017 SAP. The following are deviations from the 2017 SAP during the FY2018 monitoring year:

- Stormwater sampling excluded analysis for E. coli during many events because the laboratory hold times could not be met (storm sampling was conducted after hours and on weekends).
- In some cases, where automated samplers are used, samples were not collected during one or more segments of the storm hydrograph (i.e., rising limb, peak flow, etc.) as the result of instrument malfunction, power loss, and/or insufficient sample volume. In these cases, loads reported are underestimates of the actual load. This occurred at H-19 (Arlington) on September 6, 2017 and Mary Wahl on November 15-17, 2017.
- Some stations can be subject to backwatering from downstream flooding (i.e., Truckee River). This occurred during the April 6-7, 2018 at Yori Drain and Steamboat Creek at Clean Water Way. As a result, grab samples were collected upstream of backwater influenced waters to characterize the stormwater quality.

5 MONITORING RESULTS FY2018

Below, we describe total precipitation for FY2018, characterize the storms targeted for sampling and the regional hydrologic response, and conclude with a summary of results for constituent concentrations and calculated instantaneous daily, and total storm loads. Analytical results are presented graphically for visual analysis herein. The tabular results and laboratory reports can be found in **Appendix C** and **Appendix D**, respectively.

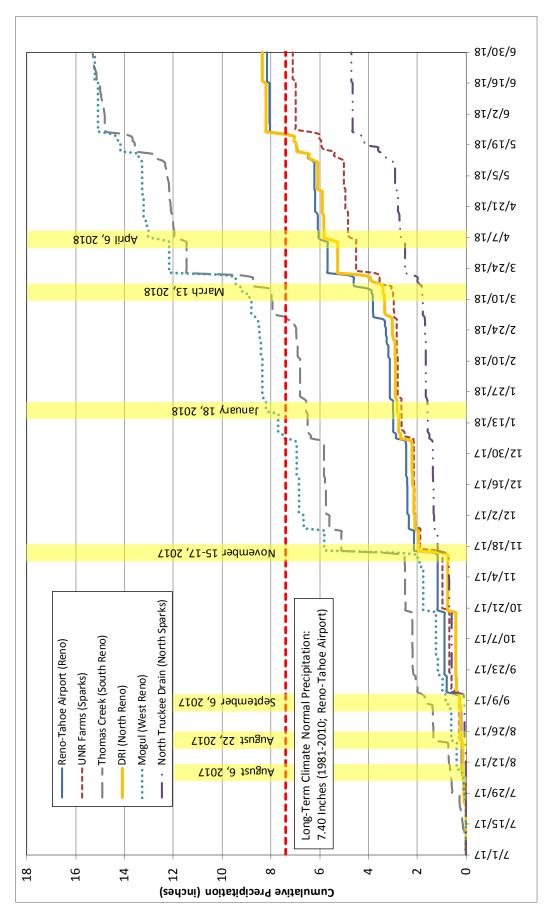
5.1 Work Conducted in FY2018

In accordance with the 2017 SAP, Balance collected 2 stormwater samples at all 15 monitoring stations across 7 different storms. (**Table 5-1**). Separately, baseflow or ambient samples were collected at all the tributary stations on September 20, 2017 to characterize summer baseflow and on February 6, 2018 to characterize winter baseflow. Summer baseflow may also coincide with the irrigation season (April to October). Baseflow conditions were defined as a non-storm period with a minimum of 10 consecutive dry days preceding the day of sampling.

Table 5-1 Storm events sampled in FY2018 and stations sampled in each event

			Storn	ns San	pled				
Fiscal Year 2018 (July 1, 2017 - June 30, 2018)			August 22, 2017	September 6, 2017	Nov 15-17, 2017	January 18, 2018	March 13, 2017	April 6, 2018	FY2018 Sample Count
Station	Station ID								
Tributaries									
Steamboat Cr at Rhodes Rd	SBC@RR				Χ			Х	2
Steamboat Cr at Narrows	SBC@NAR				Χ			Χ	2
Steamboat Cr at Clean Water Way	SBC@CWW				Χ			Χ	2
Whites Cr at Old Virginia Hwy	WC@OVH		Χ		Χ				2
Thomas Cr at S. Meadows Pkwy	TC@SMP				Χ		Χ		2
North Truckee Drain at Orr Ditch	NTD@ORD				Χ			Χ	2
North Truckee Drain at Big Fish Dr.	NTD@BFD				Χ			Χ	2
Chalk Cr at Chalk Bluff	CC@CB				Χ		Χ		2
Alum Creek at Truckee River	AC@TR				Χ			Χ	2
Yori Drain at Steamboat Creek	YD@SBC				Χ			Χ	2
Boynton Slough at Steamboat Creek	BS@SBC		Χ		Χ				2
Urban Outfalls									
Oxbow Nature Park	C-24			Χ	Χ				2
Arlington	H-19	Χ		Χ		•			2
Fisherman's Park II	D-16				Χ	Χ			2
Mary Wahl Ditch SDOE008936				••••••••••	Χ	•		Χ	2

Notes:


X = Denotes that samples were collected at this station during the identified storm event

In FY2018, Balance operated and maintained 4 near-continuous streamflow gaging stations on monitored tributaries: (1) Chalk Creek at Chalk Bluff (CC@CB); (2) Alum Creek at Truckee River (AC@TR); (3) Thomas Creek at South Meadows Parkway (TC@SMP); and (4) Yori Drain at Steamboat Creek (YD@SBC). Near-continuous streamflow records (15-minute data were collected for all stations except Yori Drain. Near-continuous streamflow data were collected at 5-minute intervals for Yori Drain. All stations were calibrated with manual observations of stage and stage shifts were applied where appropriate to produce an annual hydrograph at each station. Annual hydrographs from other monitored tributary stations were sourced from near-continuous streamflow gaging stations operated and maintained by the US Geological Survey (USGS) or Truckee

Meadows Water Authority (TMWA). Instantaneous and cumulative streamflow volumes measured at all stations together with sampled constituent concentrations were used to calculate instantaneous, daily, and/or total storm loads.

5.2 Precipitation Summary FY2018

Due to the spatial and temporal variability in rainfall across the Truckee Meadows, precipitation data used for this study were evaluated from 6 precipitation stations (see Figure 3-1). Cumulative daily precipitation across stations is compared in Figure 5-1 and highlights the spatial variability of precipitation in the Truckee Meadows in FY2018. Rainfall spatial variability in the Truckee Meadows is common along the Sierra Nevada Front and is associated with several factors including storm type (frontal, convective, etc.) and storm direction. Most storms having a west to east direction result in a rain-shadow effect in which less rainfall is observed further east of the Carson Range mountain front. During isolated summer thunderstorms, measurable rainfall may fall on some portions of the Truckee Meadows while other areas receive none. Across the Truckee Meadows total annual precipitation in FY2018 ranged from as low as 4.71 inches in North Truckee Drain at Orr Ditch (North Sparks) to 15.29 inches in Thomas Creek (South Reno), illustrating the rain-shadow effect. Precipitation spatial variability in each storm sampled is shown in Table 5-2 and further highlights the rain shadow effect across the Truckee Meadows. For instance, the November 15-17, 2017 storm exhibited between 0.46 inches (North Truckee Drain at Orr Ditch) and 3.81 inches (Mogul). FY2018 annual precipitation at the Reno-Tahoe International Airport, centrally located in the Truckee Meadows, was 8.16 inches, slightly above the long-term climate normal precipitation (7.40 inches; 1981-2010) for this station.

Cumulative Precipitation at 6 Different Rain Gages, Truckee Meadows, Nevada, FY2018 Figure 5-1

Precipitation occurrence, depths and durations varied widely across the area. The 7 events that were sampled are highlighted

Table 5-2 Summary of Precipitation Depths for 6 Stations over Sampled Storm Events, Truckee Meadows, FY2018

		Storm Events Sampled							
Rainfall gage	Location	August 6, 2017	August 22, 2017	September 6, 2017	November 15-17, 2017	January 18, 2018	March 13, 2018	April 6, 2018	
		(inches)							
Reno-Tahoe Airport	Reno	0.09	0.01	0.01	0.97	0.01	0.05	0.26	
UNR-Farms	Sparks		0.12	0.01	0.91	0.01	0.07	0.24	
DRI	North Reno	0.02	0.10	0.02	1.20	0.07	0.06	0.28	
USGS-Mogul	West Reno (Mogul)	0.03	0.22	0.10	3.81	0.45	0.27	0.35	
USGS-N. Truckee Drain	North Sparks	0.01	0.04	0.01	0.46	0.01	0.03	0.09	
Thomas Creek	South Reno		0.58	0.02	2.59	0.06	0.09	0.20	
	Min	0.01	0.01	0.01	0.46	0.01	0.03	0.09	
	Max	0.09	0.58	0.10	3.81	0.45	0.27	0.35	

5.3 FY2018 Hydrologic Response

Annual hydrographs for 7 tributaries to the Truckee River monitored in FY2018 are presented in this section along with descriptions of hydrologic response to storms according to near-continuous streamflow records from gaging stations operated and maintained by Balance Hydrologics, TMWA, and USGS. We show daily mean streamflow for the Truckee River and near-continuous streamflow (5- or 15-minute data) for all monitored tributaries. The higher resolution 5-minute data are required at some stations to illustrate the urban nature of stormwater runoff in these tributaries where instantaneous streamflow can exceed the daily mean streamflow by an order of magnitude.

5.3.1 TRUCKEE RIVER HYDROLOGIC RESPONSE, FY2018

Figure 5-2 shows FY2018 daily mean streamflow for the Truckee River at three different USGS gaging stations within the Truckee Meadows: Truckee River at Mogul, Truckee River at Reno, and Truckee River at Vista, in FY2018. These gaging stations were selected because they bracket the upstream and downstream extents of the Truckee Meadows where tributaries and outfalls sampled under this program discharge to the Truckee River.

At the beginning of the fiscal year (July 2017), during baseflow conditions, daily mean streamflow continued to recede from the spring snowmelt recession and dam storage operations upstream and measured 1,773 cfs (Mogul), 1,725 cfs (Reno), and 2,092 cfs (Vista) on July 1, 2017. Baseflow receded to between 300 cfs and 500 cfs by end of July. Several convective storms were observed and sampled in August and September; however, these events marginally increased daily mean streamflow in the Truckee River. A significant frontal storm on November 15-17, 2017 increased daily mean streamflow to over 2,000 cfs at Reno and Vista gaging stations. Natural runoff and releases from upstream reservoirs sustained daily mean streamflow in the Truckee River between 300 cfs and 500 cfs through the winter months with small increases from smaller events in January and March 2018. Additional larger events occurred in late March and early April and resulted in the peak daily mean flow (5,249 cfs, Vista), and annual peak flow on April 7, 2018. Daily streamflow receded to baseflows into the summer months with occasional increases from smaller storm events.

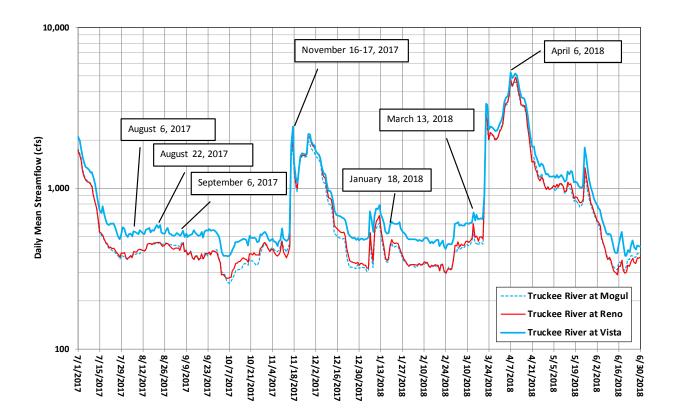


Figure 5-2 Daily Mean Streamflow, Truckee River at Three Stations, Truckee Meadows, Nevada, FY2018 As the Truckee River flows through the Cities of Reno and Sparks, it receives contributing flows from North Truckee Drain, Steamboat Creek and several other smaller tributaries and stormwater urban outfalls. Hydrologic response in the Truckee River to 7 sampled storms in FY2018 are identified.

5.3.2 NORTH TRUCKEE DRAIN HYDROLOGIC RESPONSE, FY2018

Figure 5-3 displays a record of near-continuous (15-minute) streamflow in the North Truckee Drain (NTD) at two monitoring stations, Orr Ditch (NTD@ORD) and Big Fish Drive (NTD@BFD) in FY2018. At the beginning of the fiscal year, baseflow in the North Truckee Drain was measured to be near 1 cfs at NTD@ORD and approximately 5 cfs downstream at NTD@BFD. Streamflow records at both stations exhibited rapid rising and falling limbs of the hydrograph during storm events and reflected a high degree of imperviousness in the watershed. Notable storms and peak flows were measured at NTD@BFD on November 16, 2018 (97 cfs), March 22, 2018 (74 cfs), May 19, 2018 (80 cfs), and May 25, 2018 (112 cfs). The last storm, on May 25was the annual peak flow for this station. Streamflow in June 2018 returned to values similar to those observed in the beginning of the fiscal year. Stormwater was sampled from both stations on November 16, 2017 and April 7, 2018. Baseflow was sampled from both stations on September 20, 2017 and

February 7, 2018 to characterize the summer and winter ambient water quality, respectively.

We note that automated sampling equipment at NTD@BFD was not installed until October 2017; therefore, a grab sample was collected at this location in the absence of continuous samples in a 24-hour period.

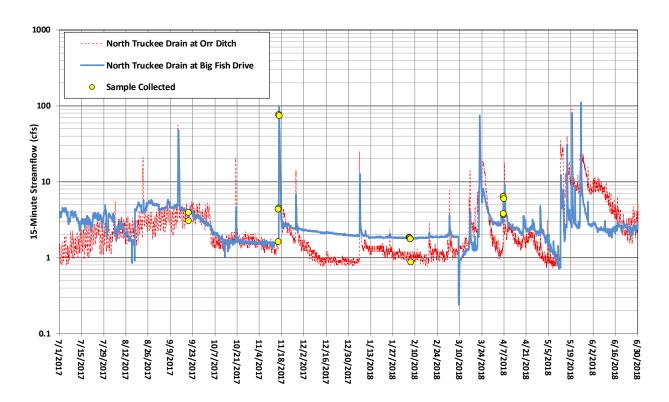


Figure 5-3 Continuous (15-minute) Streamflow, North Truckee Drain at Orr Ditch and Big Fish Drive, Truckee Meadows, Nevada, FY2018

5.3.3 STEAMBOAT CREEK HYDROLOGIC RESPONSE, FY2018

FY2018 continuous streamflow for three monitoring stations on Steamboat Creek at Rhodes Road (SBC@RR), the Narrows (SBC@NAR), and Clean Water Way (SBC@CWW) are shown in **Figure 5-4**. Snowmelt recession continued into early August with streamflows measuring 150 cfs (SBC@RR), 221 cfs (SBC@NAR), and 237 cfs (SBC@CWW) measured on July 1 and falling to seasonal lows of 8 cfs (SBC@RR), 21 cfs (SBC@NAR), and 38 cfs (SBC@CWW) by mid-October. Notable storms and peak flows were measured at SBC@CWW on November 17, 2018 (477 cfs), March 22, 2018 (n/a cfs), May 16, 2018 (317 cfs), and May 25, 2018 (467 cfs). SBC@CWW became backwatered by high flows on the Truckee River between March 22 and April 20, 2018; however, based on the peak flow of

773 cfs measured at SBC@NAR on March 22, 2018, we can assume this was also the annual peak flow for the downstream station (SBC@CWW). Streamflow in June 2018 rapidly receded to values similar to or much below those observed in the beginning of the fiscal year. Stormwater was sampled from both stations on November 16, 2017 and April 7, 2018. Baseflow was sampled from both stations on September 20, 2017 and February 7, 2018 to characterize the summer and winter ambient water quality, respectively.

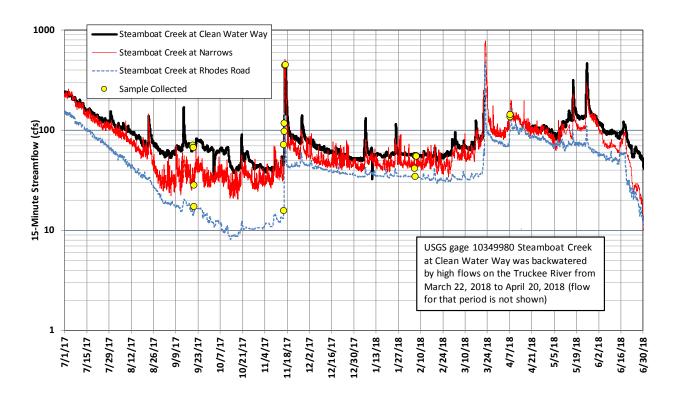


Figure 5-4 Continuous (15-minute) Streamflow, Steamboat Creek at Three Stations, Truckee Meadows, Nevada, FY2018

5.3.4 ALUM CREEK HYDROLOGIC RESPONSE, FY2018

Figure 5-5 shows 15-minute streamflow for Alum Creek at Truckee River in FY2018. Manual measurements of streamflow and the collection dates of water quality samples are also shown. The hydrograph for Alum Creek exhibited flashy peak flows with rapid rise and fall of stage, indicative of an urbanized watershed. In the absence of manual streamflow measurements greater than 10 cfs at this station, a record of continuous streamflow required estimating peak flows. We used standard hydrographic techniques including the continuity equation (Flow = Area*Velocity) where cross-sectional area was measured from high-water marks at the station, and velocity was obtained using the Manning's

TRUCKEE MEADOWS STORMWATER MONITORING FY2018 ANNUAL DRAFT REPORT

Equation. Because peak flows are estimated, the stage-discharge rating curve for this gage is rated fair. Streamflow below roughly 0.2 cfs is also difficult to measure accurately at this station.

Alum Creek exhibited a baseflow near 1.5 cfs in the beginning of the fiscal year. The streamflow instrument was intermittently above the water surface between late July and early October and therefore, a record of streamflow is unreported. Streamflow was measured below 1 cfs into October, but gradually increased into November. An estimated peak flow of 43 cfs occurred on November 16, 2017. Streamflow receded below 0.25 cfs into the winter months with some short-lived increases and small peaks above 1 cfs. Annual peak flow estimated to be roughly 90 cfs was recorded on March 22, 2018 with smaller peak flows on April 7, 2018 (13 cfs), April 23, 2018 (16 cfs), May 7, 2018 (30 cfs), May 16, 2018 (21 cfs), and May 25, 2018 (29 cfs). Streamflow continued into the end of the fiscal year above 2.0 cfs.

Stormwater samples were collected on November 15, 2017 and April 7, 2018. Baseflow samples were collected on September 20, 2017 and February 7, 2018.

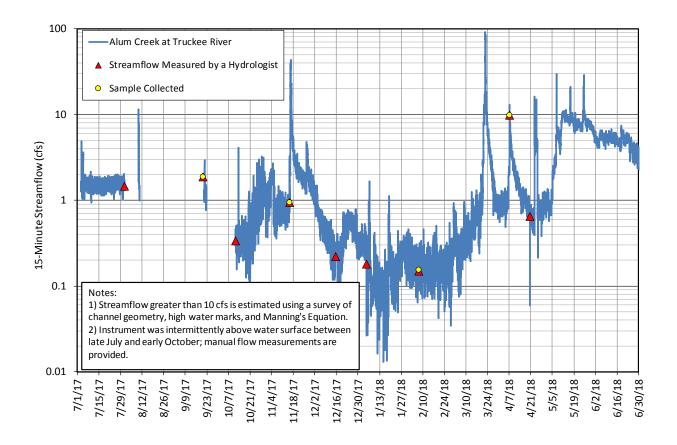


Figure 5-5 Continuous (15-minute) Streamflow, Alum Creek at Truckee River, FY2018

5.3.5 CHALK CREEK HYDROLOGIC RESPONSE, FY2018

Figure 5-6 shows 15-minute continuous streamflow for Chalk Creek at Chalk Bluff in FY2018. Manual measurements of streamflow and collection of water quality samples are also shown. Chalk Creek exhibited flashy peak flows with rapid rise and fall in streamflow, indicative of an urbanized watershed. Streamflow exceeding 16 cfs is based on an extrapolation of the stage-discharge rating curve as estimated using high-water marks and hydraulic geometry.

Chalk Creek exhibited perennial streamflow with daily mean baseflow measured between roughly 0.6 and 1.0 cfs. Storm events increased streamflow on multiple occasions in FY2018 with estimated peak flows between 20 and 26 cfs. The annual peak flow was estimated to be roughly 26 cfs on May 25, 2018.

Stormwater samples were collected on November 15, 2017, and March 13, 2018. Baseflow water samples were collected on September 20, 2017, and February 2, 2018.

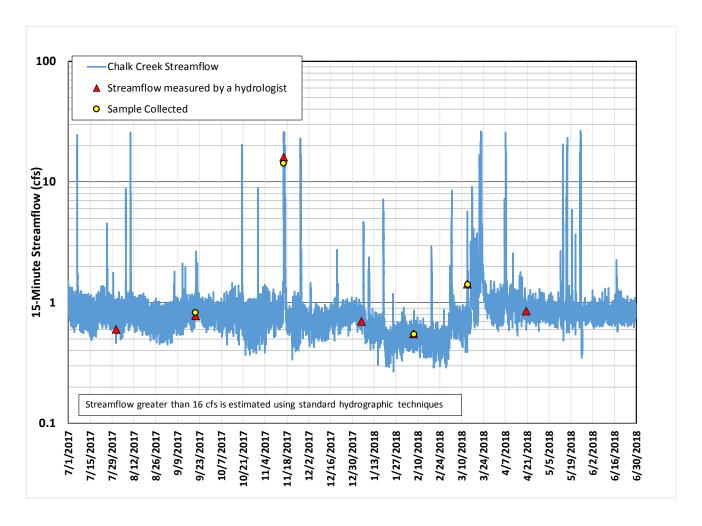


Figure 5-6 Continuous Streamflow (15-minute), Chalk Creek at Chalk Bluff, FY2018

5.3.6 THOMAS CREEK HYDROLOGIC RESPONSE, FY2018

Figure 5-7 shows 15-minute continuous streamflow for Thomas Creek at South Meadows Parkway in FY2018. Manual measurements of streamflow and collection of water quality samples are also shown. Thomas Creek originates above 8,000 feet and receives snowmelt runoff from Mount Rose, urban runoff from the lower watershed, and irrigation return flows from Last Chance Ditch. As such, we observed daily fluctuations in streamflow associated with a diurnal snowmelt cycle and flashy peak flows (rapid rise and fall of stage), indicative of urban stormwater runoff and/or irrigation return flows.

TRUCKEE MEADOWS STORMWATER MONITORING FY2018 ANNUAL DRAFT REPORT

In FY2018, we observed a beaver dam downstream of the gaging station that backwatered the instruments. The period of record subject to backwatering was removed. A new gaging station was installed approximately 150 feet upstream and beyond the influence of the beaver dam. A preliminary stage-to-discharge rating curve for the new station is still being developed. Therefore, streamflow is estimated using standard hydrographic methods for values above those manually measured (3.7 cfs).

Thomas Creek exhibited perennial streamflow in FY2018. Baseflow in the beginning of the fiscal year continued to reflect a snowmelt recession with daily mean baseflow measured around 10.0 cfs but rapidly falling to near 2.0 cfs. Fluctuations in streamflow, absent of precipitation, are likely associated with irrigation return flows. Storm events increased streamflow on multiple occasions in FY2018 with peak flows recorded on October 23, 2017, November 16, 2017 (observed), March 22, 2018, April 7, 2018, and May 16 and 25, 2018. Streamflow receded into the summer months to near 1.0 cfs by the end of the fiscal year.

Stormwater samples were collected on November 16, 2017, and March 13, 2018. Baseflow water samples were collected on September 20, 2017, and February 6, 2018.

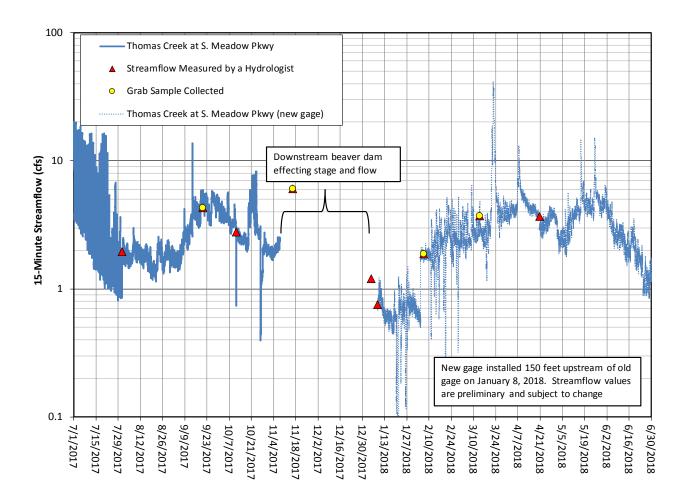


Figure 5-7 Continuous Streamflow (15-minute), Thomas Creek at S. Meadows Parkway, FY2018

5.3.7 WHITES CREEK HYDROLOGIC RESPONSE, FY2018

Figure 5-8 shows hourly streamflow on Whites Creek at Old Virginia Highway and collection of water quality samples. This gaging station is operated and maintained by TMWA; accuracy of streamflow was not verified. Whites Creek exhibited perennial streamflow in FY2018. Baseflow in the beginning of the fiscal year followed a snow-melt recession from over 25 cfs on July 1 to a steady baseflow between 7 cfs and 9 cfs by August. A rapid reduction in baseflow from roughly 7.5 cfs to 3.0 cfs occurred on October 20, 2017 and may be related to the end of irrigation season. A storm event increased streamflow on November 15, 2017; however, power failures prevented recorded streamflow for this period. Annual peak flow occurred on March 22, 2018 for this station; however, we documented high-water marks above the top of the flume which suggested that the flow exceeded the capacity of the flume. The maximum capacity of the flume is approximately 45 cfs (Steeland, K., pers. comm., 2018). Baseflow increased

from about 4 cfs to over 10 cfs on May 7, 2018; likely the result of irrigation releases. Additional storms increased streamflow over 20 cfs on May 15, May 24, and June 6, 2018. Baseflow receded to near 4 cfs by the end of the fiscal year.

Stormwater quality samples were collected on August 22, 2017 and November 15, 2017; however, no streamflow information is available for the November sampling event, as such, no constituent instantaneous loads were calculated. Baseflow water quality samples were collected on September 20, 2017 and February 7, 2018.

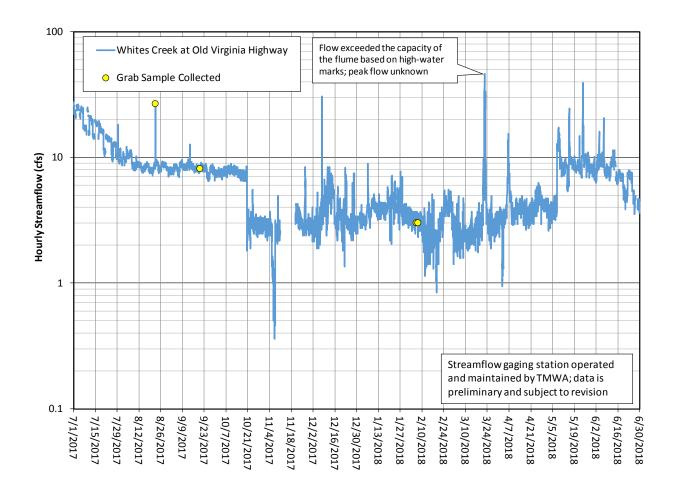


Figure 5-8 Continuous Streamflow (hourly), Whites Creek at Old Virginia Highway, FY2018. (Data provided by TMWA, preliminary and subject to revision).

5.3.8 YORI DRAIN HYDROLOGIC RESPONSE, FY2018

Figure 5-9 shows discharge events for Yori Drain, a tributary to Steamboat Creek, in FY2018. Near-continuous data is reported in 5-minute intervals due to the flashy nature of runoff in this urban channel. This is a new station in FY2018, instrumented in October

TRUCKEE MEADOWS STORMWATER MONITORING FY2018 ANNUAL DRAFT REPORT

2017 with an ISCO automated sampler; therefore, we present a partial period of record in FY2018. Hydrology in Yori Drain is dependent on diversions from Pioneer Ditch (irrigation ditch), changes in streamflow may not be dependent on precipitation. As a result, flow-weighted sampling is not feasible. Instead, sampling at this station is time-weighted and near-continuous discharge is recorded.

Based on observations in previous years and on the partial period of record in FY2018, Yori Drain exhibits perennial flow. Baseflow can range between 2 cfs and 8 cfs. Peak flows may exceed 100 cfs. The outfall (and instrument) was backwatered by Steamboat Creek during flood events on November 15-17, 2017 and March 22-23, 2018, and April 6-12, 2018. During these periods, streamflow could not be accurately recorded. Equipment failure also prevent recorded streamflow from January 13, 2018 through February 1, 2018.

Stormwater sampling in Yori Drain was attempted in the November 15-17, 2017 and April 6-7, 2018 storm events. In both events, backwatering from Steamboat Creek hindered sampling of Yori Drain waters at the station. Instead, grab samples were collected in these events upstream of the influence of backwatering. Baseflow samples were collected as a grab sample on September 20, 2017 and on February 6-7, 2018 using the automated sampler. Additional efforts to collect multiple storm samples using the automated sampler were examined; however, subsequent storms did not meet the 10-day dry period requirement per the 2017 SAP.

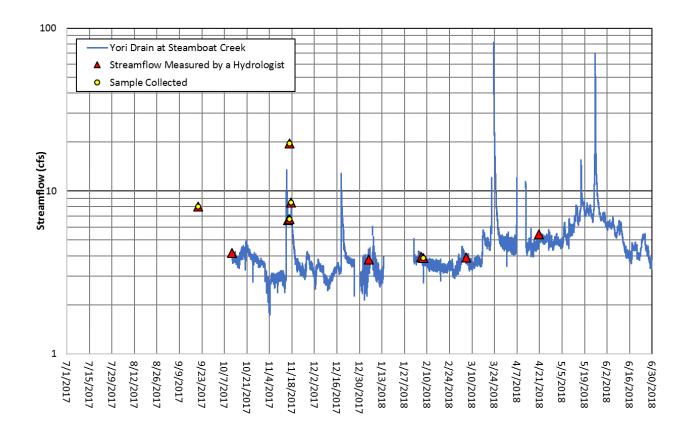


Figure 5-9 Continuous Streamflow (5-minute), Yori Drain at Steamboat Creek, FY2018

5.3.9 ARLINGTON (H-19) STORMWATER URBAN OUTFALL HYDROLOGIC RESPONSE, FY2018

Figure 5-10 shows discharge events for the stormwater urban outfall located at Arlington Street (H-19) in FY2018. Near-continuous data is reported in 5-minute intervals due to the flashy nature of runoff in this stormwater urban outfall. This station was outfitted with Campbell Scientific telemetry on December 8, 2017, which allows for remote data acquisition. This station exhibited short lived runoff during precipitation events and is dry during non-storm periods; however, we measured some runoff events during non-storm periods which may be the result of residential irrigation runoff, illegal discharges, or urban nuisance flow. Such events occurred daily through much of October 2017.

In FY2018 backwatering from the Truckee River affected the instrument at the outfall during flood events on March 22, 2018, and for the period between April 2 and April 18, 2018. As such, the April 7, 2018 storm event was not recorded and could not be sampled.

In FY2018, when the outfall was not backwatered, multiple peak flows exceeded 5 cfs, with the annual peak flow of roughly 10 cfs (February 20, 2018. An automated stormwater quality composite sample was collected on August 6, 2017 and September 6, 2017. Stormwater urban outfalls were not sampled for baseflow conditions.

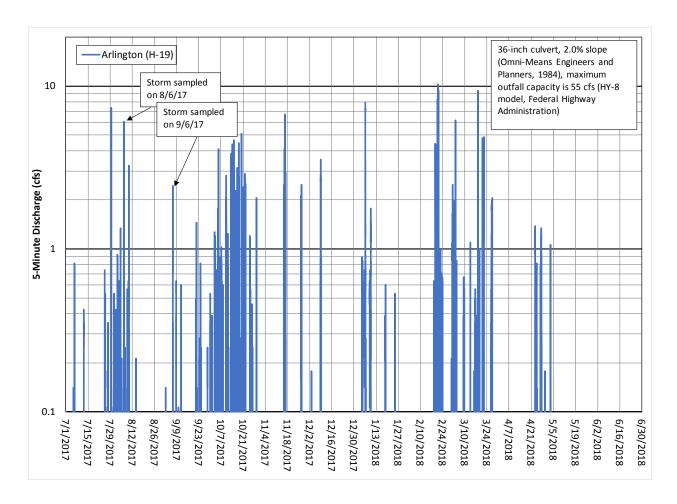


Figure 5-10 Continuous Discharge (5-minute), Arlington outfall (H-19), FY2018

5.4 Stormwater and Baseflow Constituent Concentrations and Physical Parameters

The established water quality standards (WQS) and requirements to maintain higher quality differ from one monitoring location to another, as described in Section 1.3. Below we present results for both stormwater and ambient water quality for each sample collected and each constituent analyzed in FY2018.

5.4.1 TOTAL NITROGEN, NITRATE, NITRITE, AND TOTAL KJELDAHL NITROGEN

Total Nitrogen (Total-N) concentrations for all samples collected in FY2018 are shown in Figure 5-11, Figure 5-12, Figure 5-13, Figure 5-14, and Figure 5-15, grouped by their listed

water body and specific WQS or numeric criteria, if one exists. Stations that are instrumented with automated samplers may show 4 different concentrations per storm event and baseflow sampling to correspond to the composited samples across a storm hydrograph. All other stations will show a single concentration per grab sample or per storm event and baseflow sampling.

Total-N was detected in most samples collected from two tributaries and one stormwater urban outfall (Oxbow Nature Park) that discharge to the Truckee River upstream of Idlewild (**Figure 5-11**). Concentrations ranged from 0.67 mg/L to 11.0 mg/L. All samples collected in FY2018 except two (Alum Creek, baseflow sampled in September 2017 and February 2018; non-detect) exceeded the WQS for this segment of the Truckee River (≤ 0.43 mg/L). Ambient or baseflow samples collected from Chalk Creek in September 2017 and February 2018 also exceeded WQS and ranged between 2.4 mg/L and 2.8 mg/L.

Total-N was detected in all samples collected from three stormwater urban outfalls that discharge to the Truckee River between E. McCarran and Idlewild (From **Figure 5-12**). Concentrations exceeded the WQS for this segment of the Truckee River ($\leq 0.43 \text{ mg/L}$) and ranged from 1.7 mg/L to as high as 22.0 mg/L. Stormwater urban outfalls do not exhibit baseflow and were therefore not sampled during ambient or non-storm conditions.

From **Figure 5-13**, Total-N was detected in all samples collected from North Truckee Drain, a tributary to the Truckee River upstream of Lockwood. All samples exceeded the WQS for this segment of the Truckee River (≤ 1.2 mg/L) and ranged from 1.6 mg/L to 3.7 mg/L. In one instance, ambient or baseflow concentrations exceeded stormwater concentrations in North Truckee Drain at Big Fish Drive.

From **Figure 5-14**, Total-N concentrations from samples collected in Steamboat Creek and Thomas Creek (a tributary to Steamboat Creek) ranged from 0.31 mg/L to 3.3 mg/L. The highest concentration was measured in Steamboat Creek at Clean Water Way during the November 15-17, 2017 storm event. In general, ambient or baseflow concentrations exhibited lower values when compared to stormwater concentrations with the exception of Yori Drain where concentrations were similar between baseflow and stormwater samples, and ranged between 1.7 mg/L and 2.5 mg/L. There are no Total-N WQS for Steamboat Creek.

From **Figure 5-15**, Total-N concentrations from two stormwater samples collected in Whites Creek measured 0.84 mg/L and 1.6 mg/L. Samples collected from both summer and winter baseflow were non-detect for Total-N. There are no Total-N WQS for Whites Creek.

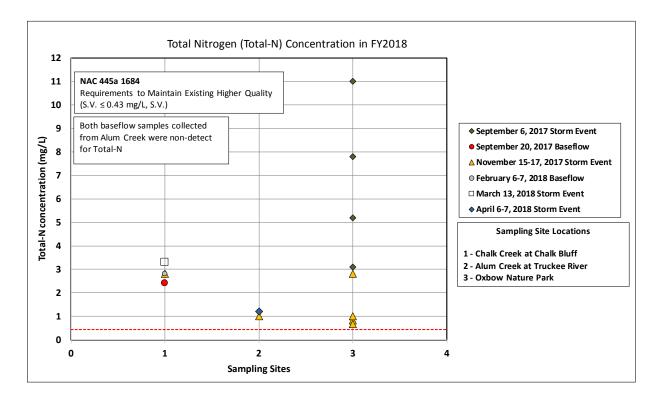


Figure 5-11 Total Nitrogen (Total-N) Concentrations for Tributaries and Stormwater Urban Outfalls to the Truckee River upstream of Idlewild, FY2018

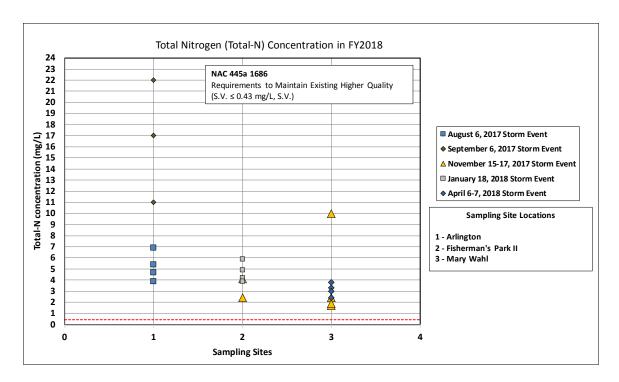


Figure 5-12 Total Nitrogen (Total-N) Concentrations for Stormwater Urban Outfalls to the Truckee River from E. McCarran upstream to Idlewild, FY2018

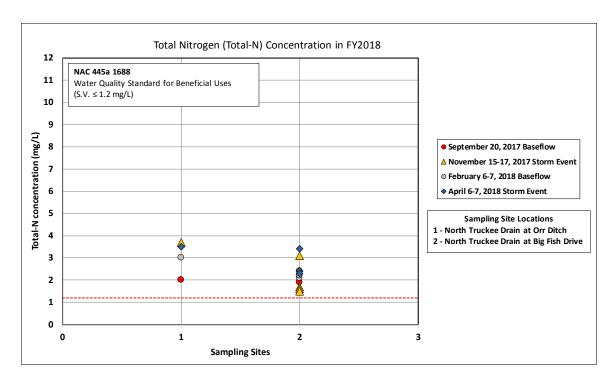


Figure 5-13 Total Nitrogen (Total-N) Concentrations for Tributaries to the Truckee River between Lockwood, upstream to E. McCarran, FY2018

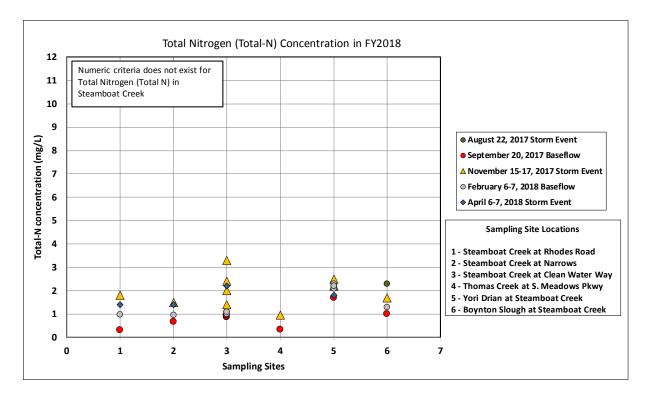


Figure 5-14 Total Nitrogen (Total-N) Concentrations for Steamboat Creek and Tributaries, FY2018

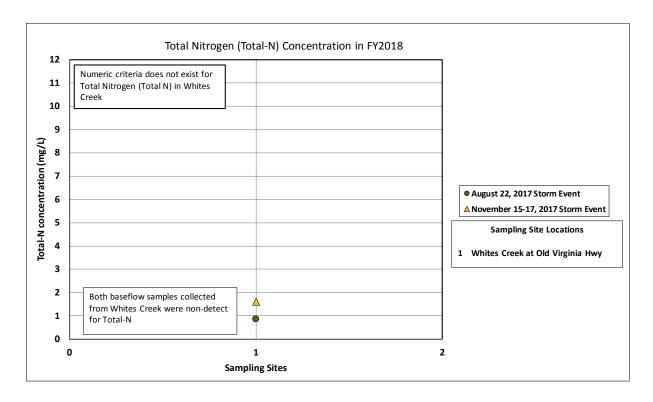


Figure 5-15 Total Nitrogen (Total-N) Concentrations for N.F. Whites Creek, WY2017

Nitrate (NO₃) is measured only from selected stations (see 2017 SAP). NO₃ concentrations for stormwater and ambient samples collected in FY2018 are shown in **Figure 5-16**, **Figure 5-17**, **Figure 5-18**, and **Figure 5-19**, grouped by their listed water body and specific numeric criteria.

From **Figure 5-16**, NO₃ measured from two tributaries and one stormwater urban outfall that discharge to the Truckee River upstream of Idlewild ranged from 0.01 mg/L to as high as 2.8 mg/L. Three out of 4 samples collected from Chalk Creek exceeded the WQS for this segment of the Truckee River ($\leq 2.0 \text{ mg/L}$); two of these samples were collected from Chalk Creek baseflow sampling.

From **Figure 5-17**, NO₃ concentrations measured from samples collected at three stormwater urban outfallss that discharge to the Truckee River between E. McCarran and Idlewild ranged between 0.01 mg/L and 2.8 mg/L. Two separate samples exceeded the WQS established for this segment (\leq 2.0 mg/L); Arlington (2.1 mg/L) and Mary Wahl (2.8 mg/L) collected from runoff in the April 6-7, 2018 storm event. Stormwater urban outfallss do not exhibit baseflow and were therefore not sampled during ambient or non-storm conditions.

From **Figure 5-18**, NO₃ concentrations measured from samples collected in North Truckee Drain, a tributary to the Truckee River upstream of Lockwood ranged between 0.06 mg/L and 2.0 mg/L. All concentrations were below the WQS established for this segment (\leq 2.0 mg/L). In some cases, baseflow concentrations exceeded storm concentrations.

From **Figure 5-19**, NO₃ concentrations measured from samples collected at three different stations in Steamboat Creek ranged from less than 0.02 mg/L to 1.6 mg/L. The highest concentrations were measured from stormwater and baseflow in Yori Drain. Some samples collected from Thomas Creek were non-detect for NO₃. No nitrate numeric criteria exist for Steamboat Creek.

Nitrate was not detected in Whites Creek samples with the exception of a storm sample collected on November 15, 2018 and measured 0.09 mg/L.

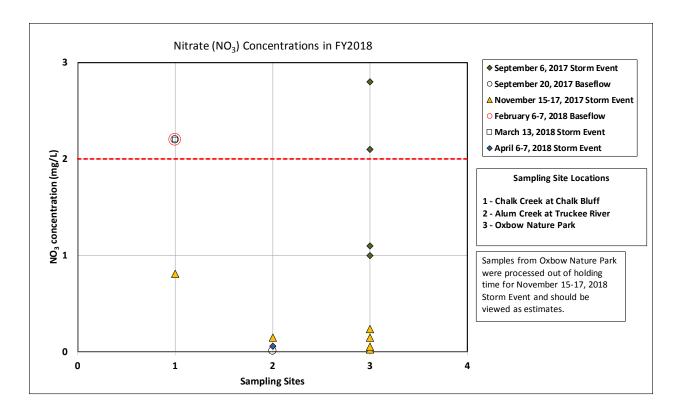


Figure 5-16 Nitrate Concentrations for Tributaries and Stormwater Urban Outfalls to the Truckee River upstream of Idlewild, FY2018

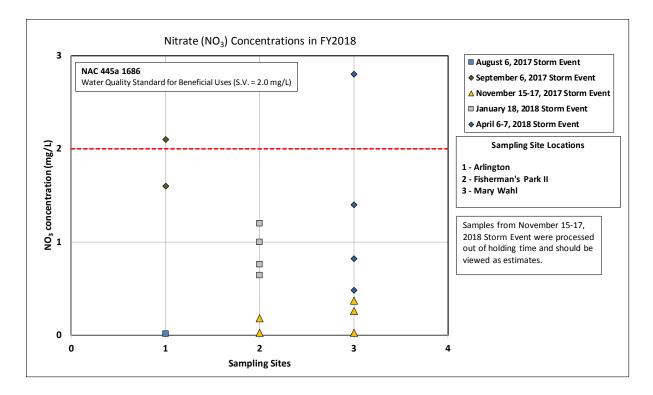


Figure 5-17 Nitrate Concentrations for Stormwater Urban Outfalls to the Truckee River from E. McCarran upstream to Idlewild, FY2018

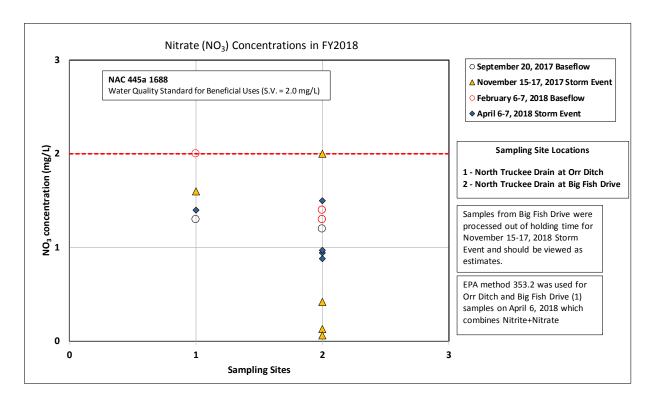


Figure 5-18 Nitrate Concentrations for Tributaries to the Truckee River between Lockwood, upstream to E. McCarran, FY2018

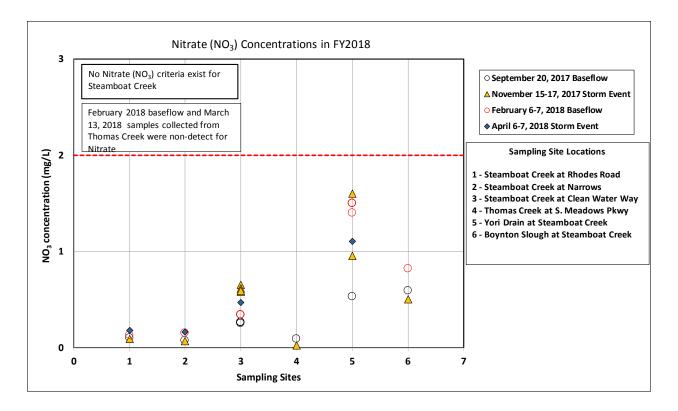


Figure 5-19 Nitrate Concentrations for Steamboat Creek, FY2018

Nitrite as nitrogen (NO₂) is typically an unstable form and readily transforms into NO₃. NO₂ was analyzed in both stormwater and baseflow samples and was detected in low concentrations (less than 0.11 mg/L). There are no water quality criteria for NO₂.

Total Kjeldahl Nitrogen (TKN) includes both organically bound nitrogen and NH₃, forms available to aquatic life. TKN concentrations for stormwater and ambient samples collected in FY2018 are shown in **Figure 5-20**, **Figure 5-21**, **Figure 5-22**, **Figure 5-23**, and **Figure 5-24**, grouped by their listed water body. Numeric criteria do not exist for TKN in the listed water bodies monitored under this program.

From **Figure 5-20**, TKN concentrations measured from two tributaries and one stormwater urban outfall that discharge to the Truckee River upstream of Idlewild ranged from 0.52 mg/L to as high as 7.8 mg/L. The highest concentrations were associated with the September 6, 2017 stormwater sample collected from Oxbow Nature Park. TKN was not measured above laboratory detection limits from baseflow sampled in September 2017.

From **Figure 5-21**, TKN concentrations measured from samples collected in three stormwater urban outfallss that discharge to the Truckee River between E. McCarran and Idlewild ranged between 0.92 mg/L and 15.0 mg/L. Highest concentrations were

associated with stormwater collected on September 6, 2017 at the Arlington stormwater urban outfall. Stormwater urban outfallss do not exhibit baseflow and were therefore not sampled during ambient or non-storm conditions.

From **Figure 5-22**, TKN concentrations measured from samples collected in North Truckee Drain, a tributary to the Truckee River upstream of Lockwood ranged between 0.75 mg/L and 2.0 mg/L. In most cases, stormwater concentrations were higher than baseflow concentrations.

From **Figure 5-23**, TKN concentrations measured from samples collected at three different stations in Steamboat Creek and tributaries below Rhodes Road ranged from 0.21 mg/L to 2.6 mg/L. The highest concentration was measured from a stormwater sample collected from Steamboat Creek at Clean Water Way.

From **Figure 5-24**, TKN concentrations measured from stormwater samples collected in Whites Creek ranged from 0.74 mg/L to 1.50 mg/L. TKN was not measured above laboratory detection limits in baseflow samples.

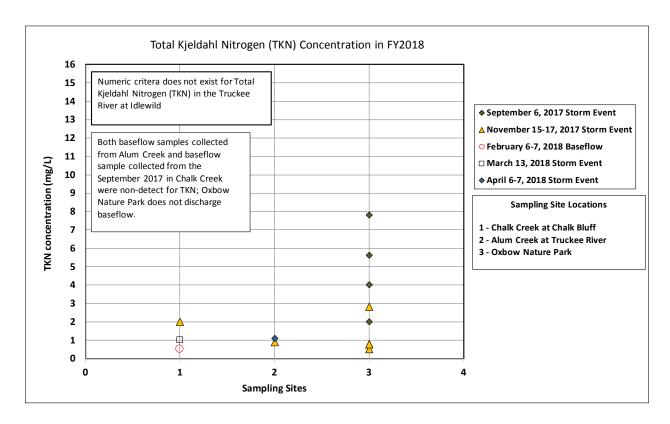


Figure 5-20 TKN Concentrations for Tributaries and Stormwater Urban Outfalls to the Truckee River upstream of Idlewild, FY2018

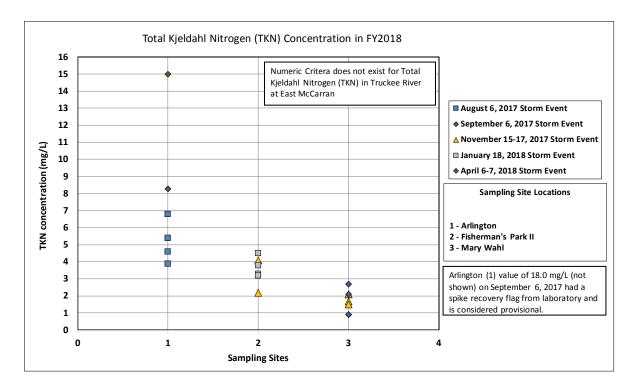


Figure 5-21 TKN Concentrations for Stormwater Urban Outfalls to the Truckee River from E. McCarran upstream to Idlewild, FY2018

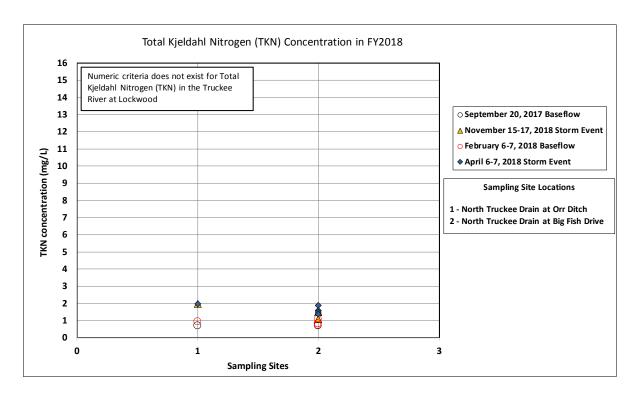


Figure 5-22 Concentrations for Tributaries to the Truckee River between Lockwood, upstream to E. McCarran, FY2018

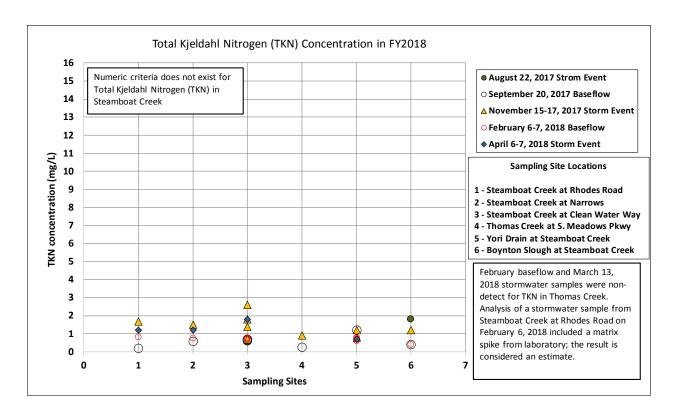


Figure 5-23 TKN Concentrations for Steamboat Creek and Tributaries, FY2018

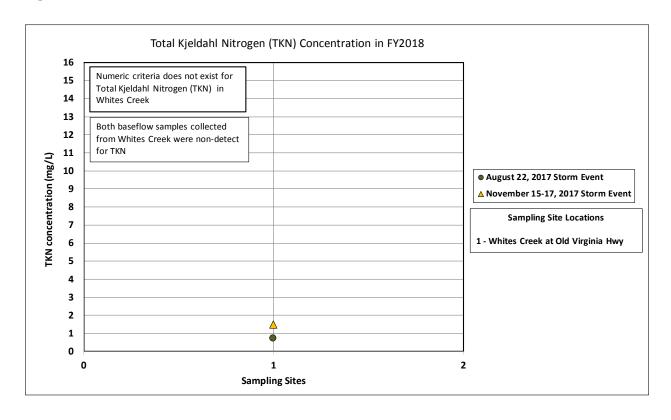


Figure 5-24 TKN Concentrations for Whites Creek, FY2018

5.4.2 Total Phosphorus and Ortho Phosphate

Total-P concentrations for stormwater and ambient samples collected in FY2018 are shown in Figure 5-25, Figure 5-26, Figure 5-27, Figure 5-28, Figure 5-29 and Figure 5-30, grouped by their listed water body. Single value WQS do not exist for Total-P in most of the tributaries monitored. As such, where none exist, we compare these concentrations to annual-averages to maintain existing higher quality ($\leq 0.05 \text{ mg/L}$) and/or to protect beneficial uses ($\leq 0.10 \text{ mg/L}$) in this reach. While most samples exceeded these annual average standards, they are single values that may not represent long-term averages.

From **Figure 5-25**, Total-P concentrations measured from two tributaries and one stormwater urban outfall that discharge to the Truckee River upstream of Idlewild ranged from 0.03 mg/L to 0.56 mg/L. Highest concentrations were measured from stormwater samples collected Oxbow Nature Park.

From **Figure 5-26**, Total-P concentrations measured from three stormwater urban outfallss that discharge to the Truckee River between E. McCarran and Idlewild ranged from 0.12 mg/L to as high as 1.4 mg/L. Highest concentrations were measured from stormwater samples collected from Arlington stormwater urban outfall.

From **Figure 5-27**, Total-P concentrations measured from samples collected in North Truckee Drain, a tributary to the Truckee River upstream of Lockwood ranged between 0.12 mg/L and 0.28 mg/L. Stormwater concentrations were similar to baseflow concentrations.

From **Figure 5-28**, Total-P concentrations measured from samples collected in Steamboat Creek at Rhodes Road ranged from 0.14 mg/L to 0.28 mg/L from both stormwater and baseflow samples. Results meet the WQS (S.V. \leq 0.33 mg/L) for this segment of Steamboat Creek.

From **Figure 5-29**, Total-P concentrations measured from samples collected in Steamboat Creek and tributaries below Rhodes Road ranged from 0.05 mg/L to 0.31 mg/L. Numeric criteria to protect water quality does not exist for this segment of Steamboat Creek and its tributaries.

From **Figure 5-30**, Total-P concentrations measured from samples collected in Whites Creek ranged from 0.03 mg/L to 1.0 mg/L. A stormwater sample collected in the

November 15-17 storm event exceeded WQS to protect beneficial uses (\leq 0.10 mg/L) while baseflow samples met this standard.

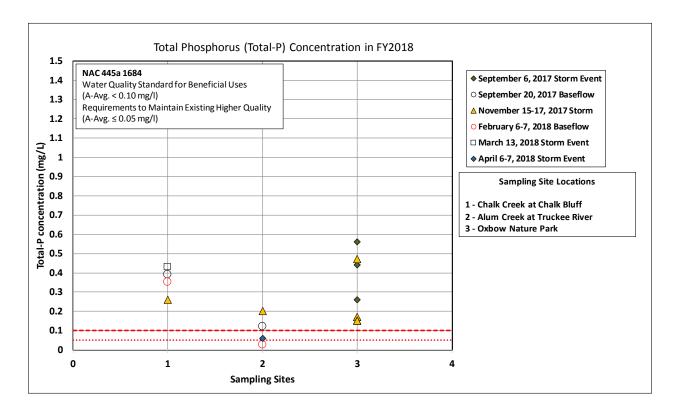


Figure 5-25 Total-P Concentrations for Tributaries and Stormwater Urban Outfalls to the Truckee River upstream of Idlewild, FY2018

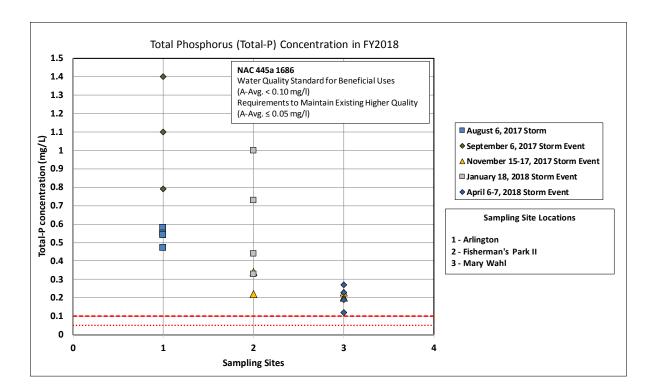


Figure 5-26 Total-P Concentrations for Stormwater Urban Outfalls to the Truckee River from E. McCarran upstream to Idlewild, FY2018

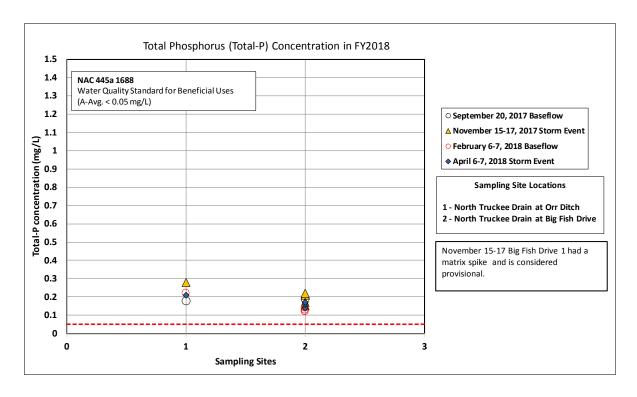


Figure 5-27 Total-P Concentrations for Tributaries to the Truckee River between Lockwood, upstream to E. McCarran, FY2018

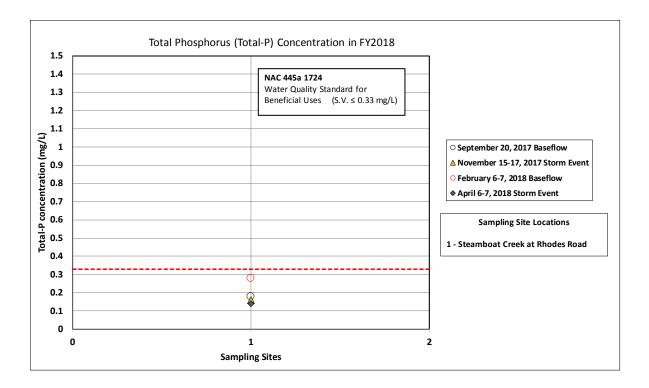


Figure 5-28 Total-P Concentrations for Steamboat Creek between Rhodes Road upstream to the outlet of Washoe Lake, FY2018

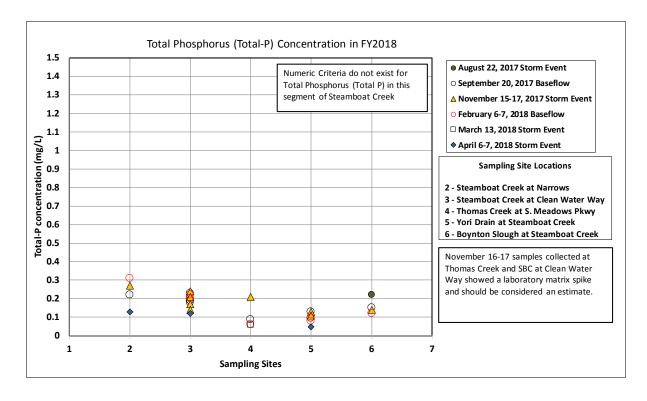


Figure 5-29 Total-P Concentrations for Steamboat Creek and Tributaries, FY2018

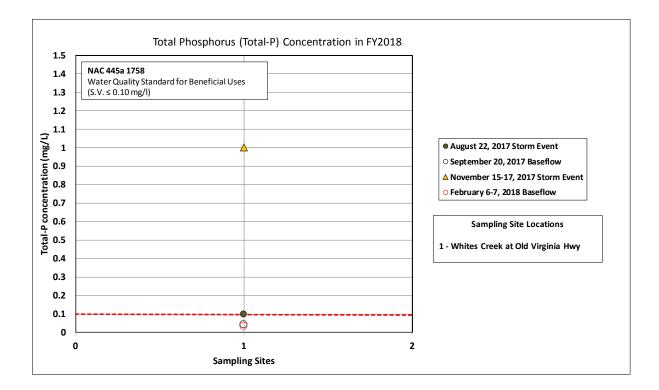


Figure 5-30 Total P Concentrations for Whites Creek, FY2018

Orthophosphate (Ortho-P) concentrations for stormwater and ambient samples collected in WY2017 are shown in **Figure 5-31**, **Figure 5-32**, **Figure 5-33**, **Figure 5-34**, **Figure 5-35**, **and Figure 5-36** grouped by their listed water body and specific numeric criteria (if applicable).

From **Figure 5-31**, Ortho-P concentrations measured from two tributaries and a stormwater urban outfall that discharge to the Truckee River upstream of Idlewild ranged from 0.01 mg/L to 0.39 mg/L. All concentrations exceeded WQS for beneficial uses (≤0.05 mg/L) except baseflow concentrations measured from Alum Creek. Highest concentrations were measured from both stormwater and baseflow samples collected from Chalk Creek.

From **Figure 5-32**, Ortho-P concentrations measured from three stormwater urban outfallss that discharge to the Truckee River between E. McCarran and Idlewild ranged from 0.03 mg/L to as high as 0.49 mg/L. All concentrations exceeded WQS for beneficial uses (≤0.05 mg/L) with the exception of stormwater samples collected from the Arlington outfall in the August 6, 2017 storm event. Conversely, highest concentrations were measured from stormwater sampled collected from the Arlington outfall in the April 6-7, 2018 storm event.

From **Figure 5-33**, Ortho-P concentrations measured from samples collected in North Truckee Drain, a tributary to the Truckee River upstream of Lockwood ranged between 0.07 mg/L and 0.32 mg/L. Stormwater concentrations exhibited similar ranges across stations, while stormwater concentrations exceeded baseflow concentrations.

From **Figure 5-34**, Ortho-P concentrations measured from samples collected in Steamboat Creek at Rhodes Road ranged from 0.02 mg/L to 0.18 mg/L from both stormwater and baseflow samples. Stormwater concentrations exceeded baseflow concentrations; however, numeric criteria do not exist for Ortho-P in Steamboat Creek.

From **Figure 5-35**, Ortho-P concentrations measured from samples collected in Steamboat Creek and tributaries below Rhodes Road ranged from 0.02 mg/L to 0.33 mg/L. Highest concentrations were measured from Steamboat Creek when compared to its tributaries. Numeric criteria to protect water quality does not exist for this segment of Steamboat Creek and its tributaries.

From **Figure 5-36**, Ortho-P concentrations measured from samples collected in Whites Creek ranged from 0.01 mg/L to 0.13 mg/L.

Identification of the source(s) of phosphorus (Total-P and Ortho-P) in tributaries is complicated by multiple possible sources and hydrological, geochemical, and biological processes affecting phosphorus fate and transport (Denver and others, 2010). Romeis (1999) identified multiple possible sources of excess phosphorus to Steamboat Creek that included: Livestock, fertilizers, irrigation return flows, leaking septic systems and or bank erosion. Concentrations of phosphorus (as phosphate) have been measured in geothermal wells in the Truckee Meadows region (Great Basin Groundwater Geochemical Database, 2016), while Shump (1985) and Skalbeck and others (2002) have established that some tributaries, including Steamboat Creek, are gaining streams and receive groundwater from both non-thermal and thermal waters. The link between these possible sources and transport is, however poorly understood, and additional investigations into the source(s) of elevated phosphorus (Total-P and Ortho-P) concentrations are warranted.

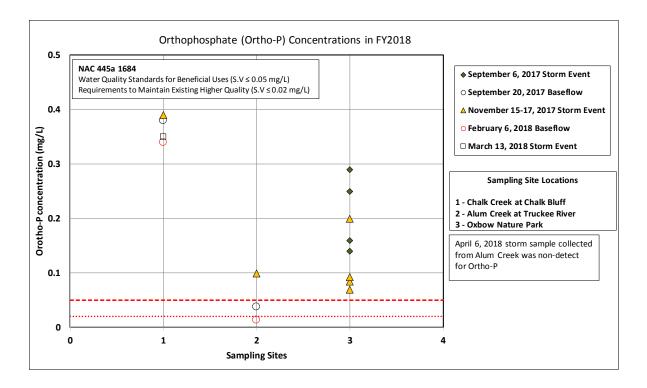


Figure 5-31 Ortho-P Concentrations for Tributaries to the Truckee River upstream of Idlewild, FY2018

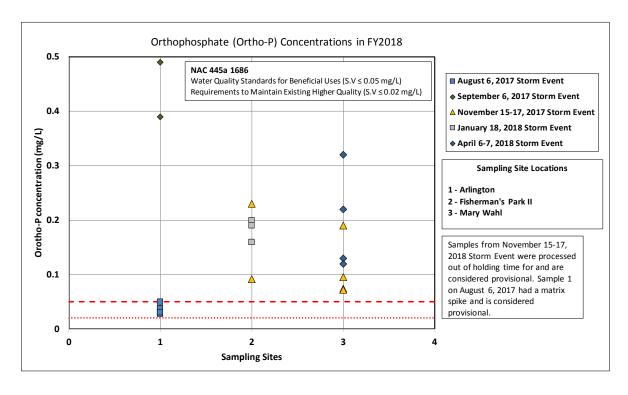


Figure 5-32 Ortho-P Concentrations for Stormwater Urban Outfalls to the Truckee River from E. McCarran upstream to Idlewild, FY2018

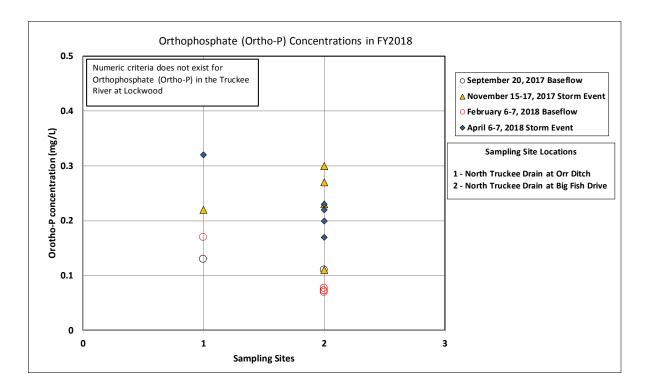


Figure 5-33 Ortho-P Concentrations for Tributaries to the Truckee River between Lockwood, upstream to E. McCarran, FY2018

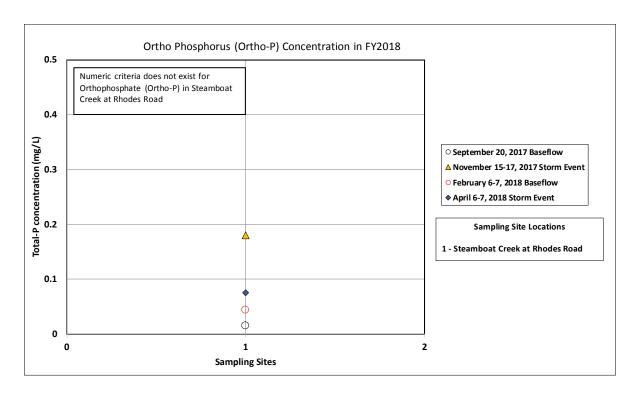


Figure 5-34 Ortho-P Concentrations for Steamboat Creek between Rhodes Road upstream to the outlet of Washoe Lake, FY2018

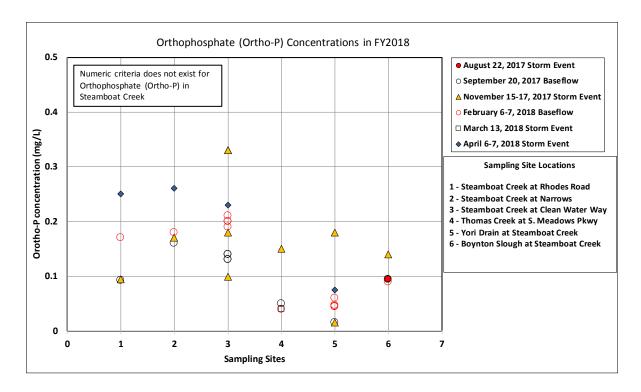


Figure 5-35 Ortho-P Concentrations for Steamboat Creek and Tributaries, FY2018

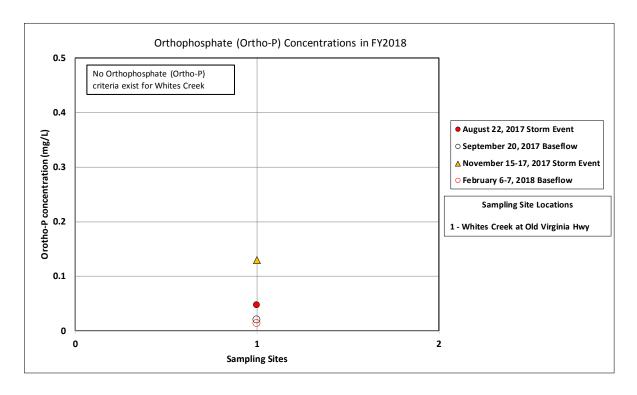


Figure 5-36 Ortho-P Concentrations for Whites Creek, FY2018

5.4.3 TOTAL DISSOLVED SOLIDS AND TOTAL SUSPENDED SOLIDS

TDS concentrations for stormwater and ambient samples collected in FY2018 are shown in **Figure 5-37**, **Figure 5-38**, **Figure 5-39**, **Figure 5-40**, **Figure 5-41**, and **Figure 5-42**, grouped by their listed water body and specific numeric criteria. Vertical axes in all graphs are logarithmic to show the range of values detected.

From Figure 5-37, TDS concentrations measured from two tributaries and one stormwater urban outfall that discharge to the Truckee River upstream of Idlewild ranged from 48 mg/L to as high as 2,400 mg/L. We compare these concentrations to single value criterion used to maintain existing higher quality (≤ 95 mg/L) for this segment; annual-average numeric criterion to protect beneficial uses is shown for reference. All baseflow and stormwater samples collected from Chalk Creek exceeded the requirement; while a single baseflow sample (February 6-7, 2018) collected from Alum Creek also exceeded this requirement. Elevated TDS concentrations in Chalk Creek have been measured consistently in both stormwater and baseflow and are likely associated with high dissolved sulfides eroded from local soils (JBR Environmental, 2010).

From **Figure 5-38**, TDS concentrations measured from three stormwater urban outfallss that discharge to the Truckee River between E. McCarran and Idlewild ranged from 48 mg/L to 660 mg/L. We compare these concentrations to requirements used to maintain existing higher quality (≤ 120 mg/L) for this segment; annual-average numeric criterion to protect beneficial uses is shown for reference. Only a single stormwater sample collected from Arlington outfall exceeded this requirement.

From **Figure 5-39**, TDS concentrations measured from samples collected in North Truckee Drain, a tributary to the Truckee River upstream of Lockwood ranged from 140 mg/L to as high as 1,300 mg/L. We compare these concentrations to requirements used to maintain existing higher quality ($\leq 260 \text{ mg/L}$) for this segment; annual-average numeric criterion to protect beneficial uses is shown for reference. Most concentrations measured in North Truckee Drain exceeded this requirement, with the exception some stormwater samples collected from the Big Fish Drive station.

From **Figure 5-40**, TDS concentrations measured from samples collected in Steamboat Creek at Rhodes Road ranged from 140 mg/L to 220 mg/L. These values meet the WQS for TDS established for this segment of Steamboat Creek (≤500 mg/L).

From **Figure 5-41**, TDS concentrations measured from samples collected at stations in Steamboat Creek and tributaries downstream of Rhodes Road ranged from 62 mg/L to as high as 420 mg/L. TDS concentrations were measured above 250 mg/L consistently from Steamboat Creek in both stormwater and baseflow. The highest TDS concentration was measured from Yori Drain. WQS established to protect water quality in Steamboat Creek and tributaries do not exist.

From **Figure 5-42**, TDS concentrations measured from samples collected in Whites Creek ranged from 45 mg/L to 67 mg/L. Baseflow concentrations were slightly higher than stormwater concentrations. A single value WQS does not exist for Whites Creek; however, an annual-average criterion of \leq 500 mg/L is established to protect beneficial uses. All concentrations measured from Whites Creek met this WQS.

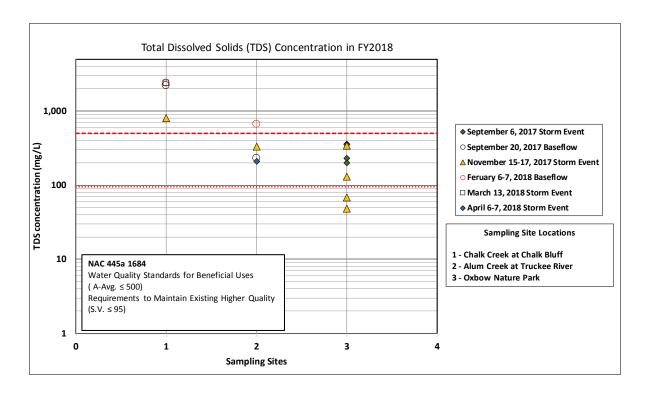


Figure 5-37 Total Dissolved Solids (TDS) Concentrations for Tributaries and Stormwater Urban Outfalls to the Truckee River upstream of Idlewild, FY2018

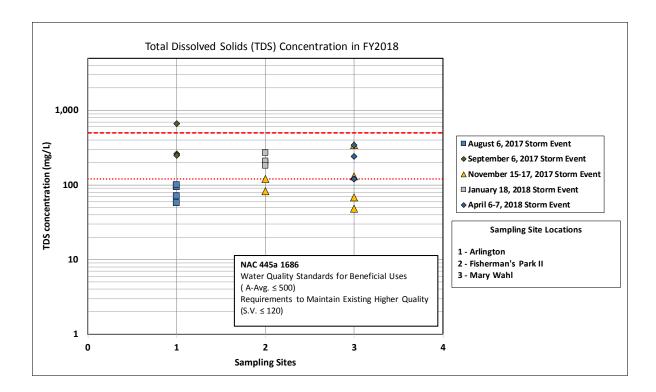


Figure 5-38 TDS Concentrations for Stormwater urban outfallss to the Truckee River from E. McCarran upstream to Idlewild, FY2018

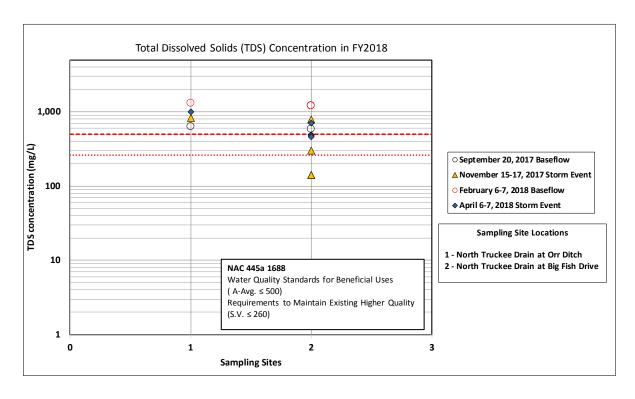


Figure 5-39 TDS Concentrations for Tributaries to the Truckee River from Lockwood, upstream to E. McCarran, FY2018

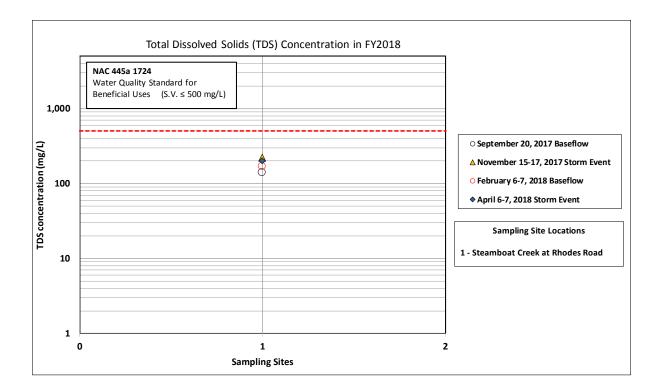


Figure 5-40 TDS Concentrations for Steamboat Creek between Rhodes Road upstream to the outlet of Washoe Lake, FY2018

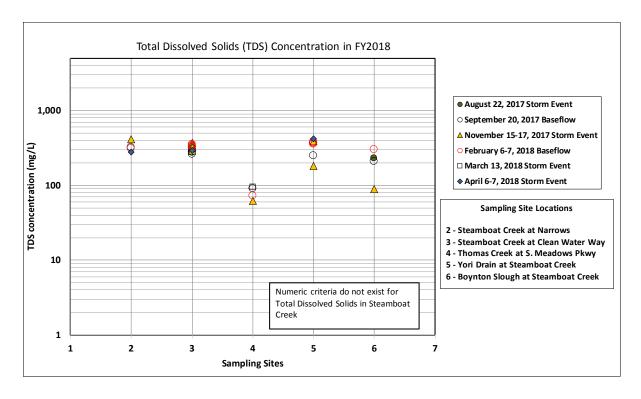


Figure 5-41 TDS Concentrations for Steamboat Creek and Tributaries, FY2018

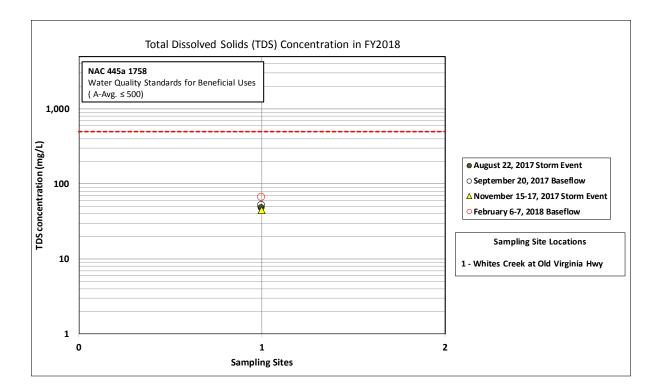


Figure 5-42 TDS Concentrations for Whites Creek, FY2018

TSS concentrations for stormwater and ambient samples collected in FY2018 are shown in **Figure 5-43**, **Figure 5-44**, **Figure 5-45**, **Figure 5-46**, and **Figure 5-47**, grouped by their listed water body and specific WQS or numeric criteria. Vertical axes in all graphs are logarithmic to better show the range in values detected.

From **Figure 5-43**, TSS concentrations measured from two tributaries and one stormwater urban outfall that discharge to the Truckee River upstream of Idlewild ranged from 1.0 mg/L to as high as 390 mg/L. We compare these concentrations to single value WQS used to protect beneficial uses (≤ 25 mg/L) for this segment; annual-average numeric criterion (≤ 15 mg/L) to maintain higher quality is shown for reference. At least a single storm sample concentration from each station exceeded the WQS; the highest concentration was measured in Alum Creek during the April 6-7, 2018 storm event. Baseflow sample concentrations for Chalk Creek and Alum Creek met the WQS.

From **Figure 5-44**, TSS concentrations measured from three stormwater urban outfallss that discharge to the Truckee River between E. McCarran and Idlewild ranged from 9.0 mg/L to as high as 1,500 mg/L. We compare these concentrations to single value WQS used to protect beneficial uses (≤ 25 mg/L) for this segment; annual-average numeric criterion (≤ 15 mg/L) to maintain higher quality is shown for reference. All stormwater samples

TRUCKEE MEADOWS STORMWATER MONITORING FY2018 ANNUAL DRAFT REPORT

collected from these three stormwater urban outfallss exceeded the WQS with the exception of one sample from Mary Wahl. Stormwater from Arlington outfall exhibited the highest TSS concentrations overall.

From **Figure 5-45**, TSS concentrations measured from samples collected in North Truckee Drain ranged from 6 mg/L to as high as 84 mg/L. We compare these concentrations to single value WQS used to protect beneficial uses (\leq 50 mg/L) for this segment; annual-average numeric criterion (\leq 25 mg/L) to maintain higher quality is shown for reference. Most samples met this WQS, with the exception of samples collected from Big Fish Drive station in the November 15-17, 2017 storm event. Baseflow samples collected from both locations on North Truckee Drain also met this the WQS.

From **Figure 5-46**, TSS concentrations measured from samples collected at three different stations in Steamboat Creek and tributaries downstream from Rhodes Road ranged from 2.0 mg/L to as high as 780 mg/L. There are no numerical standards for TSS in Steamboat Creek or its tributaries. Highest TSS concentrations were measured from Steamboat Creek and Yori Drain. In general, stormwater concentrations exceeded baseflow concentrations across all stations.

From **Figure 5-47**, TSS concentrations measured from samples collected in Whites Creek ranged from 1.0 mg/L to as high as 61 mg/L. WQS do not exist for Whites Creek.

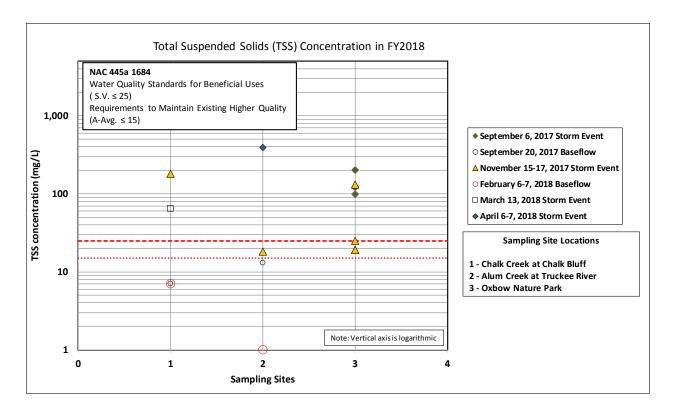


Figure 5-43 Total Suspended Solids (TSS) Concentrations for Tributaries and Stormwater Urban Outfalls to the Truckee River upstream of Idlewild, FY2018

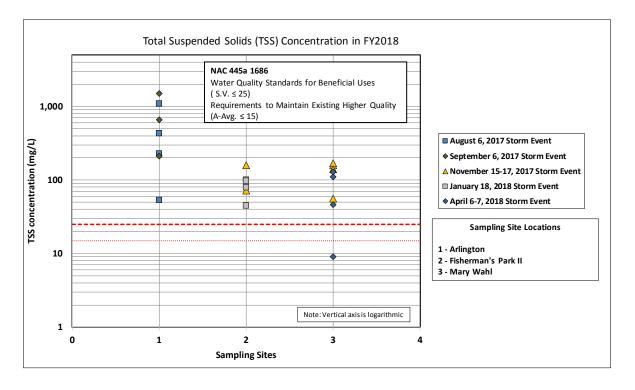


Figure 5-44 TSS Concentrations for Stormwater urban outfallss to the Truckee River from E. McCarran upstream to Idlewild, FY2018

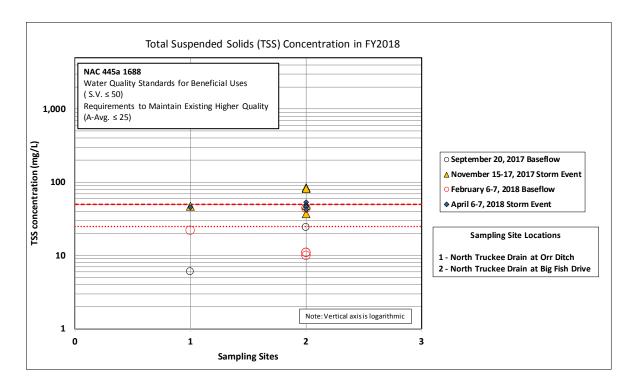


Figure 5-45 TSS Concentrations for Tributaries to the Truckee River from Lockwood, upstream to E. McCarran, FY2018

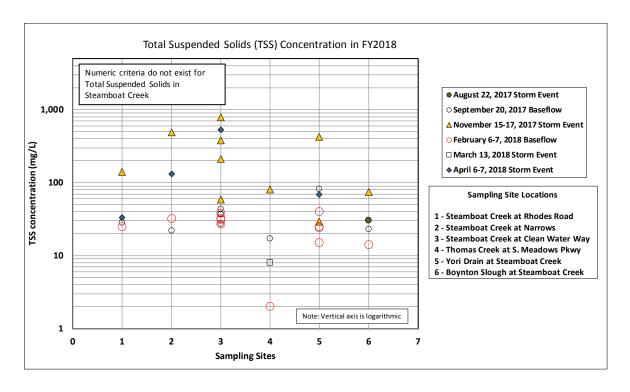


Figure 5-46 TSS Concentrations for Steamboat Creek and Tributaries, FY2018

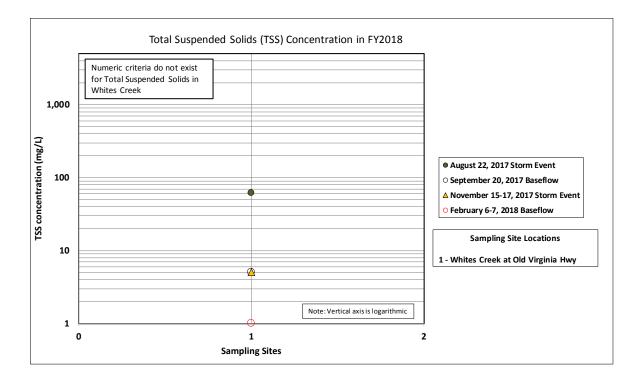


Figure 5-47 TSS Concentrations for Whites Creek, FY2018

5.4.4 ESCHERICHIA COLI BACTERIA

E. coli is an indicator of potential human health impacts from exposure to surface waters that contain excessive contamination from wildlife or human excrement and treated wastewater effluent. High counts of bacteria may not necessarily confirm the presence of pathogens but provides an indicator of risk. Efforts to collect and analyze for E. coli are limited by a holding time of 8 hours for proper analysis. In FY2018, at least one sample was successfully sampled and transferred to the laboratory within the strict holding time for: (1) Whites Creek, (2) Alum Creek, and (3) Steamboat Creek at Rhodes Road. E. coli samples were also collected and analyzed during winter and summer baseflow at stations identified for E. coli sampling in the 2017 SAP (Figure 5-48).

E. coli counts ranged between 344 MPN/100 mL and 1,120 MPN/100 mL in stormwater. The Whites Creek and Steamboat Creek samples both exceeded their individual WQS. E. coli counts ranged between 12 MPN/100 mL and 613 MPN/100 mL in baseflow. All baseflow samples met their individual WQS except for the sample collected from Steamboat Creek on September 19, 2017.

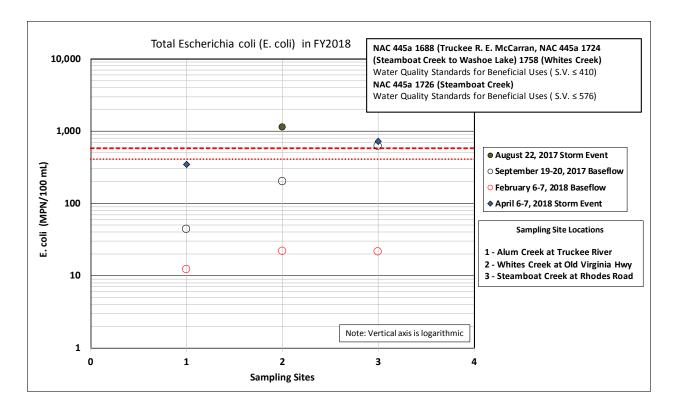


Figure 5-48 E. coli Counts for Samples Collected in Truckee Meadows, FY2018

5.4.5 Physical Parameters: Dissolved Oxygen, pH, Specific Conductance and Turbidity

Physical parameters of waters sampled are measured during each site visit (storm or non-storm conditions and when flow was present). In this section, we present physical parameters across all monitoring stations to provide greater context for water quality conditions throughout the monitoring year. NDEP (2014) recognizes that instantaneous measures of physical parameters are representative of a specific point in time and can naturally vary over a 24-hour period.

DO concentrations measured in FY2018 are shown in **Figure 5-49**, **Figure 5-50**, and **Figure 5-51**, grouped by their listed water body and specific numeric criterion for DO. In the Truckee River, WQS for DO vary depending on the time of year. In some tributaries, a fixed WQS value exists throughout the year and is shown where appropriate. DO concentrations less than 5.0 mg/L can be detrimental to aquatic life in receiving waters.

Higher DO concentrations may indicate super-saturated conditions attributed to rapid aeration and photosynthesis. During the process of photosynthesis, plants produce oxygen as a waste product. This adds to the DO concentration in the water, potentially increasing DO to values above 100 percent saturation (YSI, 2005). The actual

concentration of DO will also vary depending on water temperature and salinity. First, the solubility of oxygen decreases as temperature increases. Second, dissolved oxygen decreases exponentially as salt levels increase (Wetzel, 2001). As such, we tend to see higher DO concentrations during winter when waters are colder and fresher from snowmelt runoff. While higher concentrations may not impact receiving waters, large daily swings in DO can be devasting for aquatic life (reference?).

In general, DO concentrations can be used as a proxy for other constituents. For example, nitrate occurs readily in oxidizing conditions (higher DO concentrations), but ammonia occurs primarily in reducing conditions or the absence of DO.

From **Figure 5-49**, DO concentrations ranged from 1.96 mg/L to as high as 16.6 mg/L. DO concentrations measured across all stations discharging to the Truckee River in FY2018 met the WQS to protect beneficial uses, except Arlington outfall and the Oxbow Nature Park outfall. Temporally, higher DO concentrations were measured during the winter months; whereas the lowest DO concentrations were measured during the summer and fall months. In general, Alum Creek exhibited the highest DO concentrations from through the year. Conversely, North Truckee Drain and Arlington outfall exhibited the lowest DO concentrations through the year.

From Figure 5-50, DO concentrations measured in Steamboat Creek and tributaries downstream from Rhodes Road were measured across all stations between 6.9 mg/L and 15.1 mg/L, well above WQS established to protect beneficial uses (≥ 3 mg/L, below Rhodes Road to the Truckee River; ≥5 mg/L Rhodes Road upstream to the outlet of Washoe Lake). Only a single measurement of DO from Boynton Slough measured below these WQS (2.1 mg/L) in an August 23, 2017 storm event. During this sampling, we noted active construction on the floodplain absent of stormwater best management practices, immediately upstream of this sampling station. Sediment-laden runoff from a disturbed site may have affected DO concentrations immediately downstream. Thomas Creek and Yori Drain both exhibited consistently higher DO concentrations through the year, relative to the other stations compared. Supersaturated conditions in Yori Drain may be associated with outflows from the Yori mitigation wetlands located immediately upstream from the monitoring station. Conversely, Boynton Slough exhibited a trend of lower DO concentrations relative to other stations compared in the Steamboat Creek watershed.

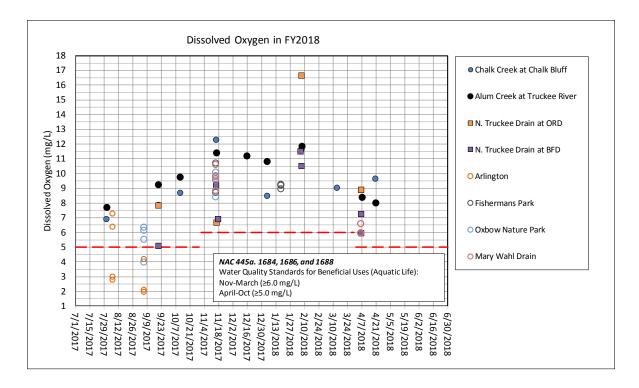


Figure 5-49 DO Concentrations for Tributaries and Stormwater urban outfallss to the Truckee River from Lockwood upstream to California/Nevada State Line, FY2018

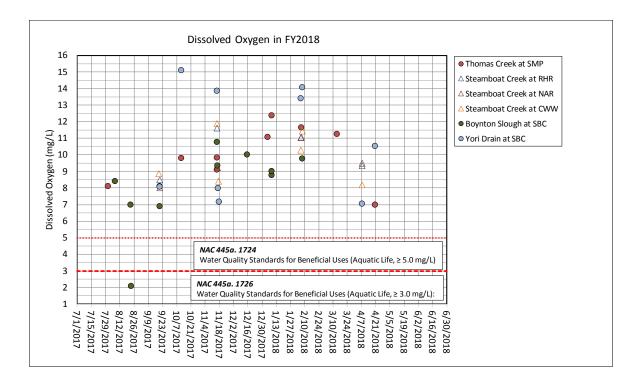


Figure 5-50 DO Concentrations for Steamboat Creek and Tributaries, FY2018

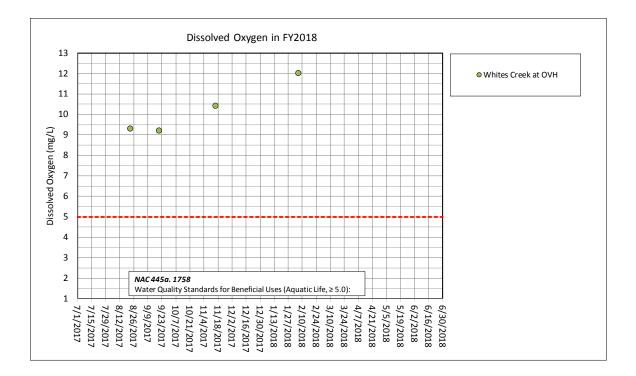


Figure 5-51 DO Concentrations for Whites Creek, FY2018

From **Figure 5-51**, DO concentrations in Whites Creek were limited to 4 measurements and ranged from 9.2 mg/L to 12.0 mg/L, well above the WQS to protect beneficial uses (≥ 5.0 mg/L).

pH values measured in FY2018 are shown in **Figure 5-52**, **Figure 5-53**, **Figure 5-54**, **Figure 5-55**, and **Figure 5-56**, grouped by their listed water body and specific numeric criterion for pH.

From **Figure 5-52**, pH ranged from 7.07 to as high as 9.00 across two tributaries and one stormwater urban outfall discharging to the Truckee River upstream of Idlewild in FY2018. All measures of pH met the WQS to protect beneficial uses, while only a few measures were slightly outside of the requirement to maintain existing higher quality.

From **Figure 5-53**, pH ranged from 5.97 to as high as 9.05 across all three stormwater urban outfallss discharging to the Truckee River between E. McCarran and Idlewild in FY2018. Because these are stormwater urban outfallss, they only discharge during a storm event; measures of pH were limited in FY2018. Most measurements of pH met the WQS to protect beneficial uses; however, many measurements from Arlington and Mary Wahl were outside this WQS and the requirement to maintain existing higher quality.

From **Figure 5-54**, pH ranged from 7.90 to as high as 8.68 from two stations on North Truckee Drain in FY2018. All measures met the WQS to protect beneficial uses and to maintain higher quality except for a single measurement in North Truckee Drain at Big Fish Drive (8.68).

From **Figure 5-55**, pH measured in Steamboat Creek and tributaries downstream of Rhodes Road ranged between 7.37 and 9.29. All measurements of pH were within WQS established to protect beneficial uses with the exception of a couple measures from Yori Drain (9.27) and one from Thomas Creek (9.29). In general, Yori Drain exhibited higher pH than others compared.

From **Figure 5-56**, pH measured in Whites Creek ranged between 7.34 and 7.82, well within WQS established to protect beneficial uses in this tributary.

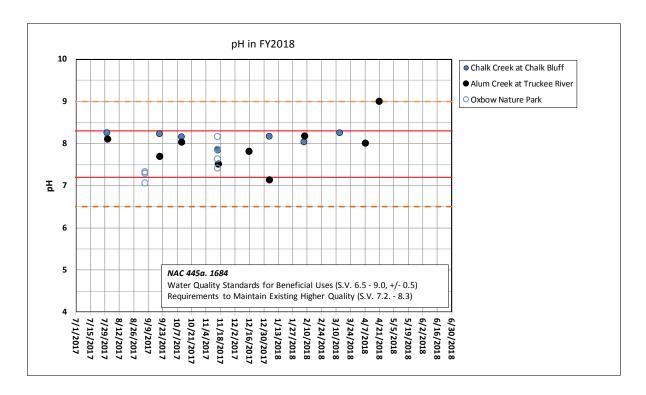


Figure 5-52 pH for Tributaries and Stormwater Urban Outfalls to the Truckee River upstream of Idlewild, FY2018

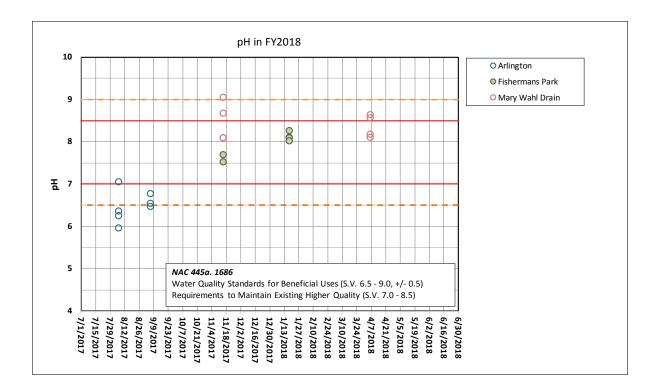


Figure 5-53 pH for Stormwater urban outfallss to the Truckee River from E. McCarran upstream to Idlewild, FY2018

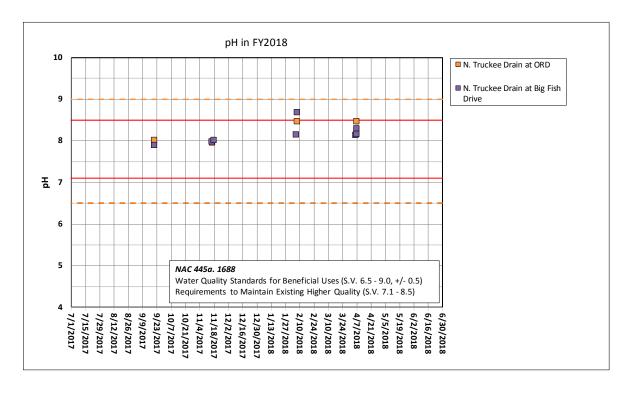


Figure 5-54 pH for Tributaries to the Truckee River from Lockwood, upstream to E. McCarran, FY2018

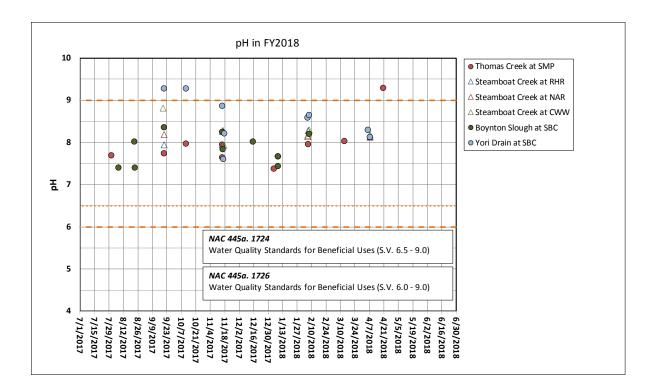


Figure 5-55 pH for Steamboat Creek and Tributaries, FY2018

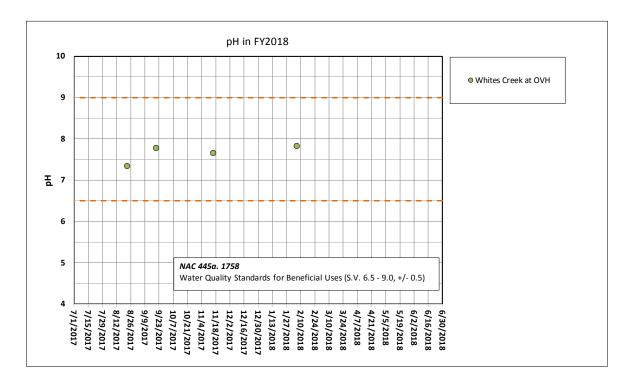


Figure 5-56 pH for Whites Creek, FY2018

Figure 5-57 compares SC, a proxy for salinity, across all monitoring stations in the Truckee Meadows in FY2018. SC ranged between 60 μ S (fresh water) and 3,414 μ S (brackish water). Currently there are no WQS for SC in the Truckee Meadows.

Chalk Creek exhibited the highest values of SC consistently through the monitoring year. Chalk Creek drains a watershed with geology and soils that can contribute to elevated specific conductance; therefore, elevated values are generally within the range expected for this creek. In general, groundwater also can dissolve more ions, so higher SC values in baseflow can indicate groundwater-supported baseflow. Such may be the case in Steamboat Creek where geothermal springs are present. Alternatively, irrigation return flows from the many ditches that discharge back to tributaries (i.e., North Truckee Drain, Steamboat Creek) may contain higher amounts of dissolved ions or salts and elevate SC in discharges to the Truckee River. Conversely, Whites Creek and Thomas Creek exhibit the lowest SC values. These watersheds originate in higher elevations with snowmelt hydrology. Snow melt runoff typically exhibits very low SC values.

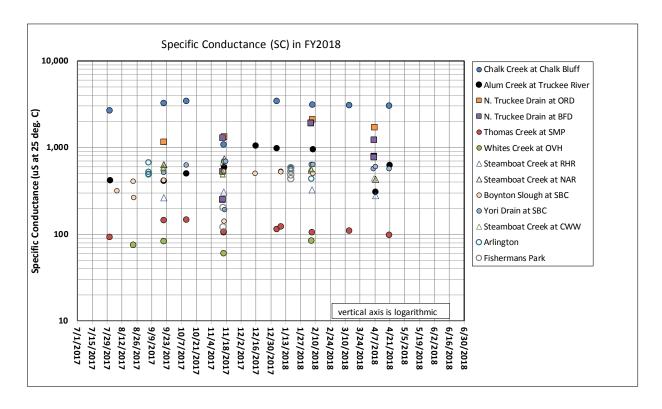


Figure 5-57 Specific Conductance (SC) Across all Stations, Truckee Meadows, FY2018\

Figure 5-58 compares turbidity across all stations for samples collected in FY2018. Turbidity is a measure of water clarity and typically increases coincident with an increase

in total suspended solids or sediments. The water quality standard for beneficial uses specifies turbidity to be equal to or less than 10 NTU (S.V.), except of Steamboat Creek and Whites Creek, where no turbidity WQS exists.

In FY2018, and in general, turbidity during baseflow conditions is typically lower than during storm events. Turbidity ranged between 2.3 NTU and 40 NTU under baseflow conditions; Steamboat Creek and Yori Drain exhibited the highest values during baseflow. During storm events, runoff samples exhibited turbidity values above the WQS with a range between 10 NTU and 524 NTU. The highest stormwater turbidity values were measured in Steamboat Creek, Arlington outfall, and Alum Creek.

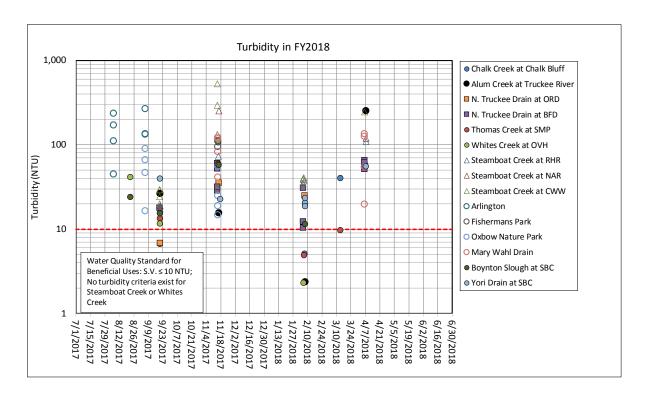


Figure 5-58 Turbidity Across all Stations, Truckee Meadows, FY2018 Stormwater and Baseflow Constituent Instantaneous Loads

Instantaneous loads can be calculated using both a measure of instantaneous flow and the constituent concentration analyzed from a grab sample. While these measures are still snapshots in time they provide additional information other than the concentration alone. For example, instantaneous loads are commonly reported in lbs./day, similar to the TMDLs such that relative comparisons can be made.

In this section, we compare instantaneous loads for a limited number of constituents (Total-N, Total-P, and TDS) across tributary sites where grab samples and instantaneous flow were measured simultaneously in both storm events and baseflow conditions. Standard reporting for instantaneous load is mass per time (e.g., lbs./day). In some cases, instantaneous loading rates for some tributary sites were not calculated because constituents were not detected above laboratory detection limits. If we suspected concentrations to be present, but below the laboratory reporting limit, we requested the measured values from the laboratory (often referred to as J-values).

Instantaneous loads for North Truckee Drain at Kleppe Lane and Steamboat Creek at Clean Water Way are not shown or discussed in this section. Automated samplers were operated during storm events and for baseflow at these tributary locations in FY2018 and total storm loads were computed and presented in subsequent sections of this report. An automated sampler was also deployed at Yori Drain in FY2018; however, due to unusually high flows in Steamboat Creek attempts to automate sample collection across different storms was hindered from backwatering in each event. As an alternative, we collected grab samples upstream of the influence of backwatering.

5.4.6 TOTAL-N INSTANTANEOUS LOADS

Figure 5-59 compares instantaneous loads for Total-N as measured in FY2018. Instantaneous loads ranged from 5.1 lbs./day to 7,938 lbs./day across all stations and across all samples collected at each station. Overall, the highest instantaneous Total-N loads were measured during the November 15-17, 2017 storm event. This event was a significant storm and likely a major 'first flush' before the wet season began. Steamboat Creek (across all three stations) exhibits the highest instantaneous Total-N loads in both storm events and baseflow conditions; for example, instantaneous loads ranged between 300 lbs./day and 7,938 lbs./day.

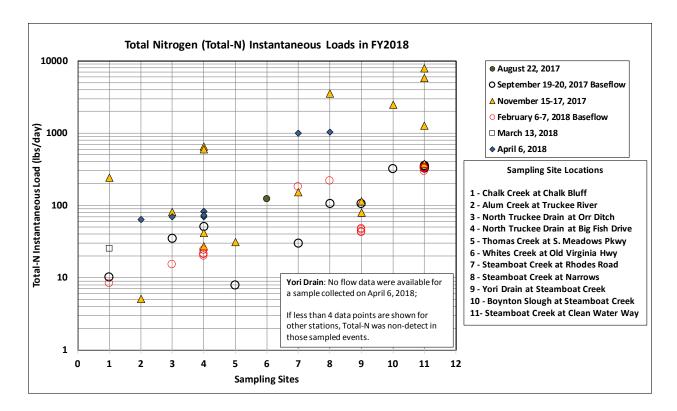


Figure 5-59 Total Nitrogen (Total-N) Instantaneous Loads Across Tributary Sites in Truckee Meadows, FY2018

5.4.7 TOTAL-P INSTANTANEOUS LOADS

Figure 5-60 compares Total-P instantaneous loads across all tributary sites where measured in FY2018. Instantaneous loads ranged from 0.02 lbs./day to 640 lbs./day across all stations and across all samples collected at each station. Similarly, the highest instantaneous Total-P loads were measured during the November 15-17, 2017 storm event. This event was a significant storm and likely a major 'first flush' before the wet season began. Steamboat Creek (across all three stations) exhibits the highest instantaneous Total-N loads in both storm events and baseflow conditions; for example, instantaneous loads ranged between 46 lbs./day and 640 lbs./day.

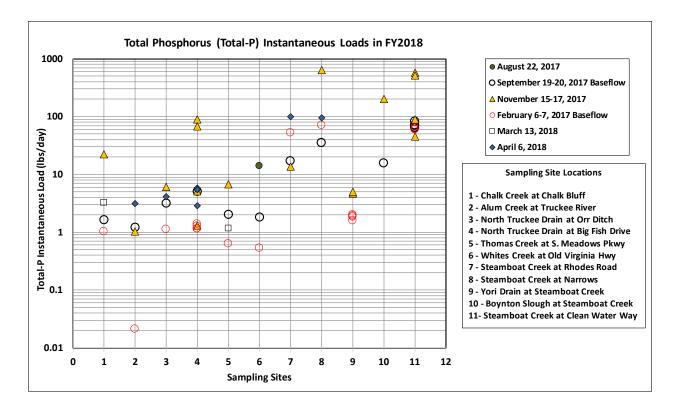


Figure 5-60 Total Phosphorus (Total-P) Instantaneous Loads Across Tributary Sites in Truckee Meadows, FY2018

5.4.8 TDS Instantaneous Loads

Figure 5-61 compares instantaneous loads for TDS across tributary sites measured in FY2018. Instantaneous loads ranged from 534 lbs./day to 970,796 lbs./day across all stations and across all samples collected at each station. Again, the highest instantaneous TDS loads were measured during the November 15-17, 2017 storm event. This event was a significant storm and likely a major 'first flush' before the wet season began. Steamboat Creek (across all three stations) exhibits the highest instantaneous TDS loads in both storm events and baseflow conditions; for example, instantaneous loads ranged between 94,750 lbs./day and 970,796 lbs./day.

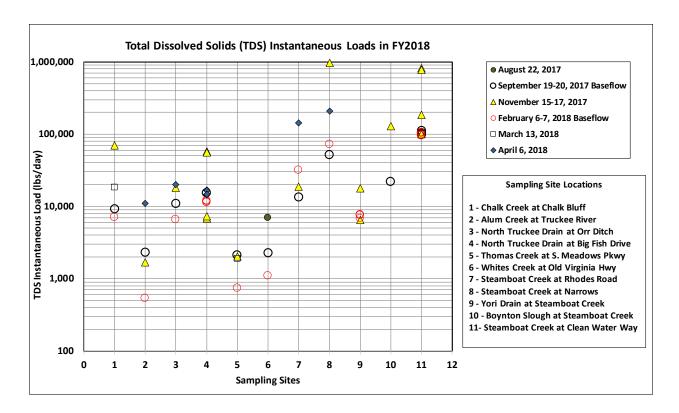


Figure 5-61 Total Dissolved Solids (TDS) Instantaneous Loads Across Tributary Sites in Truckee Meadows. FY2018

5.5 Stormwater and Baseflow Constituent Loads

Automated sampling was conducted during 2 storm events and 2, 24-hour baseflow periods. **Table 5-1** identifies dates when automated sampling was performed at stations instrumented with automated samplers and errors observed.

Stormwater and baseflow loads and yields are presented in subsequent tables. Runoff volumes and load calculations are provided for both the total storm and for distinct segments of the storm hydrograph to show variability in loads, directly related to variability in constituent concentrations and runoff volumes measured in each hydrograph segment. Yields are presented for each constituent across all stations compared and are calculated by dividing the total storm load by the station contributing area.

Monitoring Stations with Automated Samplers and Dates Sampled Table 5-1

				Storm Date			Baseflow	ow
Monitoring Station	ID	August 6, 2017	September 6, 2017	August 6, 2017 September 6, 2017 November 15-17, 2017 January 18, 2018 April 6, 2018 September 20, 2017 February 6, 2018	January 18, 2018	April 6, 2018	September 20, 2017	February 6, 2018
Urban Outfalls					Sampled			
Oxbow Nature Park	C-24		×	×				
Arlington	H-19	×	×				200 Board + iddyo +og ob alled+110 acdall	+ ovhbi+ bacaflow
Fisherman's Park II	D-16			×	×		Olibaii Odulaiis do iio	r extingit daseriow
Mary Wahl	SDOE 008936			×		×		
Tributaries								
Steamboat Creek at Clean Water Way SBC@CWW	/ SBC@CWW			×		0	×	×
North Truckee Drain at Kleppe Lane NTD@KLP	NTD@KLP			×		×	×	×
Yori Drain at Steamboat Creek	YD@SBC			0		0		×

Notes:

Each site requires sampling of 2 storms per year

X = multiple samples were successfully collected to compute a storm load

O= attempts to collect multiple samples was hindered by backwatering events from downstream flooding.

In **Table 5-2**, total stormwater runoff, loads, and yields measured at Arlington urban outfall in the August 6, 2017 storm event are presented. This event was a minor, isolated summer thunderstorm. Total storm rainfall measured less than 0.10 inches, based on nearby rain gauges. Runoff volumes and load calculations are provided for both the total storm and for distinct segments of the hydrograph to show variability in loading during the storm. Yields are presented for each constituent across all stations and are calculated by dividing the total load by the contributing area. Both loads and yields for this event were relatively minor.

Table 5-2 Constituent Loads and Runoff Volumes for Arlington Urban Outfall, August 6, 2017 Storm Event

			Arlington						
		Storm Loads							
Hydrograph	Storm Runoff Volume	Total-N	NO ₃	TKN	Total-P	Ortho-P	TDS	TSS	
	(cubic feet)	(lbs)							
First Flush	72	0.0	0	0.0	0.00	0.00	0.3	0.2	
Rising Limb	216	0.1	0	0.1	0.01	0.00	0.9	3.1	
Peak	327	0.1	0	0.1	0.01	0.00	1.9	8.8	
Falling Limb	5,805	1.7	0	1.7	0.17	0.01	36	399	
Totals	6,421	0.2	0	0.2	0.02	0.001	3.1	12.1	
	(cf/sq. mi)	(lbs./sq. mi)							
Yields	20,065	6.0	0.00	5.9	0.6	0.00	123	1284	

Notes:

Runoff and load yields are estimates based on the known contributing areas provided by City of Reno, City of Sparks, USGS or other entity. Nitrate was non-detect

In **Table 5-3**, total storm loads and yields measured from two urban outfalls during the September 6, 2017 storm event are compared. This event was a small summer thunderstorm with roughly 0.10 inches of rainfall measured at rain gauges near the two stations sampled. In this storm event, loads between these two urban outfalls are compared. In general, the two urban stations exhibited similar loads across most constituents; however, Oxbow Nature Park exhibited higher TDS loads (136 lbs.), while Arlington showed higher TSS loads (117 lbs.). Both stations drain similar areas, as such, yields were similar and reflect the differences in loads.

Table 5-3 Constituent Loads and Runoff Volumes at Arlington and Oxbow Nature Park, September 6, 2017

			Arlin	gton				
					Storm	Loads		
Hydrograph	Storm Runoff Volume	Total-N	NO ₃	TKN	Total-P	Ortho-P	TDS	TSS
	(cubic feet)				(lbs	5)		
First Flush	93	0.1	0.02	0.1	0.01	0.01	3.8	3.8
Rising Limb				No R	ising Limb Sa	mples Collecte	ed	
Peak	724	0.8	0.1	0.7	0.05	0.02	12	68
Falling Limb	3,479	2.4	0.5	1.8	0.2	0.1	54	46
Totals	4,295	3.3	0.5	2.6	0.2	0.1	70	117
	(cf/sq. mi)				(lbs./so	ą. mi)		
Yields	13,423	10	1.7	8.1	0.7	0.4	218	366
			OAD.	OW	Storm	Loads		
			Охb	ow				
Hydrograph	Storm Runoff	Total-N	NO ₃	TKN	Total-P	Ortho-P	TDS	TSS
Пушовгарп	Volume		1103	TIMIN	Total I	Ortho 1	103	155
	(cubic feet)				(lbs	5)		
First Flush	3,008	2.1	0.5	1.5	0.1	0.5	68	38
Rising Limb	89	0.03	0.01	0.02	0.00	0.01	1.3	0.7
Peak	2,469	1.2	0.3	0.9	0.1	0.3	54	15
Falling Limb	1,048	0.2	0.1	0.1	0.01	0.1	13	0.00
Totals	6,614	3.5	0.9	2.5	0.2	0.9	136	53
	(cf/sq. mi)				(lbs./so	_] . mi)		
Yields	18,373	10	2.6	6.9	0.5	2.6	378	148
					(lbs	5)		
TOTAL LOADS	10,910	6.8	1.5	5.1	0.4	1.1	206	171

No rising limb samples were collected at H-19 (Arlington)on September 6, 2017 due to flashy nature of thunderstorm hydrograph Total runoff volume of storm was not affected

In **Table 5-4**, total storm loads and yields measured for a large frontal storm between November 15-17, 2017 are presented for three urban outfalls and two major tributaries to the Truckee River. Total storm rainfall across the Truckee Meadows ranged between 0.46 inches and 3.81 inches with 0.97 inches measured at the Reno-Tahoe International Airport.

We note that due to a power failure at Fisherman's Park II station, sampling was incomplete and only partial loads/yields are presented. As such, our comparisons of these metrics exclude this station.

Table 5-4 Constituent Loads and Runoff Volumes at Three Urban Outfalls and Two Tributaries, November 15-17, 2017

			Oxbow N	ature Park				
					Storm I	Loads		
Hydrograph	Storm Runoff Volume	Total-N	NO ₃	TKN	Total-P	Ortho-P	TDS	TSS
	(cubic feet)				(lbs	;)		
First Flush	17,467	3.1	0.03	3.1	0.5	0.2	95	142
Rising Limb	34,919	1.8	0.1	1.7	0.4	0.2	50	54
Peak	112,806	4.7	1.1	3.7	1.1	0.5	141	134
Falling Limb	98,786	6.2	1.5	4.8	0.9	0.6	111	117
Totals	263,977	16	2.7	13	2.9	1.5	397	447
	(cf/sq. mi)	(lbs./sq. mi)						
Yields	733,270	44	7.5	37	8.0	4.1	1102	1242

			Fisherma	n's Park II				
					Storm I	_oads		
Hydrograph	Storm Runoff Volume	Total-N NO ₃ TKN Total-P Ortho-P TDS						
	(cubic feet)				(lbs	:)		
First Flush	82,025	21	0.1	21	81	0.5	614	819
Rising Limb Peak	186,769 134,968			No Sampl	es Collected	Due To Power	Failure	
Falling Limb	81,302	12	0.9	11	113	1.2	416	365
Totals	485,065	33	1.0	32	194.3	1.6	1,031	1,185
	(cf/sq. mi)				(lbs./sc	ı. mi)		
Yields	95,111	6.5	0.2	6.3	38.1	0.3	202	232

		Mary	Wahl				
				Storm	Loads		
Storm Runoff Volume	Total-N	NO ₃	TKN	Total-P	Ortho-P	TDS	TSS
(cubic feet)				(lbs	5)	•	
34,580	22	17	4.5	0.4	0.2	734	345
62,150	6.6	0.1	6.6	0.8	0.3	186	660
97,828	15	1.6	13	1.2	0.6	415	855
126,934	15	2.9	12	1.8	1.5	1,030	444
321,491	58	22	36	4.3	2.5	2,366	2,304
(cf/sq. mi)				(lbs./so	q. mi)		
128,596	23	8.7	14	1.7	1.0	946	921
				(lbs	.)	•	
DUTFALLS	107	25	81	201	5.6	3,793	3,936
	Volume (cubic feet) 34,580 62,150 97,828 126,934 321,491 (cf/sq. mi) 128,596	Volume Total-N (cubic feet) 22 34,580 22 62,150 6.6 97,828 15 126,934 15 321,491 58 (cf/sq. mi) 23	Storm Runoff Volume Total-N NO3 (cubic feet) 34,580 22 17 62,150 6.6 0.1 97,828 15 1.6 126,934 15 2.9 321,491 58 22 (cf/sq. mi) 23 8.7	Volume Total-N NO3 TKN (cubic feet) 34,580 22 17 4.5 62,150 6.6 0.1 6.6 97,828 15 1.6 13 126,934 15 2.9 12 321,491 58 22 36 (cf/sq. mi) 23 8.7 14	Storm Runoff Volume Total-N NO3 TKN Total-P (cubic feet) (libs) 34,580 22 17 4.5 0.4 62,150 6.6 0.1 6.6 0.8 97,828 15 1.6 13 1.2 126,934 15 2.9 12 1.8 321,491 58 22 36 4.3 (cf/sq. mi) (libs./sc 128,596 23 8.7 14 1.7 (lbs) (lbs) (lbs) (lbs) (lbs)	Storm Loads Storm Runoff Volume Total-N NO₃ TKN Total-P Ortho-P (cubic feet) (Ibs) 34,580 22 17 4.5 0.4 0.2 62,150 6.6 0.1 6.6 0.8 0.3 97,828 15 1.6 13 1.2 0.6 126,934 15 2.9 12 1.8 1.5 321,491 58 22 36 4.3 2.5 (cf/sq. mi) (lbs./sq. mi) 128,596 23 8.7 14 1.7 1.0	Storm Loads Storm Runoff Volume Total-N NO3 TKN Total-P Ortho-P TDS (cubic feet) (lbs) 34,580 22 17 4.5 0.4 0.2 734 62,150 6.6 0.1 6.6 0.8 0.3 186 97,828 15 1.6 13 1.2 0.6 415 126,934 15 2.9 12 1.8 1.5 1,030 321,491 58 22 36 4.3 2.5 2,366 (cf/sq. mi) (lbs./sq. mi) 128,596 23 8.7 14 1.7 1.0 946

Table 5-4 Constituent Loads and Runoff Volumes at Three Urban Outfalls and Two Tributaries, November 15-17, 2017 (continued)

		Steaml	oat Creek a	t Clean Wat	er Way			
					Storm I	-oads		
Hydrograph	Storm Runoff Volume	Total-N	NO ₃	TKN	Total-P	Ortho-P	TDS	TSS
	(cubic feet)				(lbs	:)		
First Flush	1,314,540	115	53	59	14	8.1	30,364	4,760
Rising Limb	10,073,700	1258	365	880	88	113	182,375	132,065
Peak	10,269,900	2116	391	1667	154	212	217,984	500,081
Falling Limb	50,836,230	7617	1872	5712	666	1047	1,015,553	1,205,969
Totals	72,494,370	11,105	2,682	8,319	922	1,380	1,446,276	1,842,874
	(cf/sq. mi)		(lbs./sq. mi) 46 11 34 3.8 5.7 5.927					
Yields	297,108	46	11	34	3.8	5.7	5,927	7,553
		North	Truckee Dra	in at Big Fisl	h Drive			
					Storm I	_oads		
Hydrograph	Storm Runoff Volume	Total-N	NO ₃	TKN	Total-P	Ortho-P	TDS	TSS
	(cubic feet)				(lbs	:)		
First Flush	31,887	6.2	4.0	2.2	0.3	0.2	1,573	96
Rising Limb	173,646	18	1.4	16	2.3	2.9	3,252	911
Peak	691,380	69	2.7	65	9.5	13	6,043	3,539
Falling Limb	1,477,935	138	39	101	16	21	12,917	3,414
Totals	2,374,848	232	47	185	28	37	23,784	7,959
	(cf/sq. mi)				(lbs./sq	ı. mi)		
Yields	23,748	2.3	0.5	1.8	0.3	0.4	238	80
TOTAL LOADS FROM	2 TRIBUTARIES	11,337	2,728	8,504	950	1,417	1,470,060	1,850,833
TOTAL LOADS	75,939,750	11,444	2,754	8,585	1,152	1,423	1,473,853	1,854,769

Loads and yields reported for Fisherman's Park II are underestimates; power failure prevented sample collection during rising limb and peak flow Yields are estimates based on the contributing areas provided by City of Reno, City of Sparks, USGS or other entity.

Watershed area North Truckee Drain at Big Fish Drive is roughly estimated due to complexity of irrigation network and urban drainage areas Steamboat Creek may also receive irrigation return flows imported from outside the watershed.

Constituent loads from the November 15-17, 2017, storm event exhibited a wide range, depending on constituent and location. In general, larger contributing areas to an urban outfall or tributary monitoring location showed higher loads, likely the direct result of higher runoff volumes. For instance, tributary drainage areas are magnitudes larger than urban outfalls.

For comparison purposes and simplicity, we discuss yield values reported in **Figure 5-6**. Between two urban outfalls, Oxbow Nature Park exhibited higher yields across all constituents. For example, the urban outfall at Oxbow Nature Park discharged total nitrogen yields (44 lbs./sq. mile) nearly twice that of Mary Wahl Drain (23 lbs./sq. mile).

Similarly, Total-P yields (8 lbs./sq. mile) were nearly 5 times yields measured from Mary Wahl Drain (1.7 lbs./sq. mile).

Storm loads from the two large tributaries, Steamboat Creek and North Truckee Drain, were measured 1 to 3 orders of magnitude greater than the 2 urban outfalls combined. For instance, Total-N loads were measured to be 11,444 lbs. from Steamboat Creek and North Truckee Drain, while roughly 107 lbs. were measured from the 3 urban outfalls when combined. Other constituents followed similar patterns. The differences can be attributed to their respective drainage areas, with potential influences from precipitation variability.

When comparing between the two tributaries, Steamboat Creek showed the highest yields across all constituents. For example, Steamboat Creek exhibited a Total-N yield of 46 lbs./sq. mile nearly 20 times more than was measured from North Truckee Drain (2.3 lbs./sq. mile). Similarly, Steamboat Creek exhibited a Total-P yield of 3.8 lbs./square mile, nearly 13 times more than was measured from North Truckee Drain (0.3 lbs./sq. mile).

Total storm loads and yields for stormwater runoff measured at the Fisherman's Park II urban outfall are presented in **Table 5-5** for the January 18, 2018 storm event. Precipitation measured in or near the drainage area was less than 0.10 inches in this event. Loads and yields are reflective of limited runoff at this station and during this event.

Table 5-5 Constituent Loads and Runoff Volumes at Fisherman's Park II, January 18, 2018

			Fisherman's	s Park II				
					Storm Loa	ds		
Hydrograph	Storm Runoff Volume	Total-N	NO ₃	TKN	Total-P	Ortho-P	TDS	TSS
	(cubic feet)				(lbs)			
First Flush	3,044	1.1	0.2	0.9	0.2	0.03	51	19
Rising Limb	3,183	1.0	0.2	0.8	0.1	0.04	40	19
Peak	3,364	0.9	0.2	0.7	0.2	0.04	44	17
Falling Limb	1,667	0.4	0.1	0.3	0.0	0.02	19	5
Totals	11,257	3.4	0.7	2.6	0.5	0.1	154	60
	(cf/sq. mi)				(lbs./sq. mi)		
Yields	2,207	0.7	0.1	0.5	0.1	0.02	30	12

Total storm loads and yields for stormwater runoff measured at an urban outfall (Mary Wahl Drain) and two tributaries are presented in **Table 5-6** for the April 6-7, 2018 storm

event. Precipitation measured in this event ranged between 0.09 inches to 0.35 inches across the Truckee Meadows. We note that rainfall and runoff patterns resulted in multiple peak flows at these stations and loads are computed for the initial peak; as such the loads and yields presented in **Table 4-8** are underestimates of the total storm.

Table 5-6 Constituent Loads and Runoff Volumes for an Mary Wahl Drain (urban outfall) and North Truckee Drain at Big Fish Drive, April 6-7, 2018

			Mary V	Vahl				
					Storm Loa	ds		
Hydrograph	Storm Runoff Volume	Total-N	NO ₃	TKN	Total-P	Ortho-P	TDS	TSS
	(cubic feet)				(lbs)			
First Flush	16,514	3.4	0.5	2.8	0.3	0.3	124	113
Rising Limb	48,670	9.1	2.5	6.4	0.6	0.7	365	395
Peak	76,699	18	13	4.4	1.1	0.6	1,628	43
Falling Limb	176,964	27	15	10	1.3	1.3	2,651	508
Totals	318,847	57	32	24	3.3	2.9	4,768	1,060
	(cf/sq. mi)				(lbs./sq. mi	i)		
Yields	127,539	23	13	10	1.3	1.2	1907	424

		North Tr	uckee Drair	at Big Fish	Drive				
					Storm Loa	ds			
Hydrograph	Storm Runoff Volume	Total-N NO ₃ TKN Total-P Ortho-P TDS							
	(cubic feet)				(lbs)				
First Flush	122,256	26	11	15	1.1	1.8	5,419	405	
Rising Limb	24,480	3.7	1.3	2.4	0.2	0.3	749	73	
Peak	74,448	11	4.4	7.0	0.8	0.9	2,231	214	
Falling Limb	252,918	36	15	22	2.7	2.7	7,263	663	
Totals	474,102	77	32	46	4.8	5.7	15,661	1,355	
	(cf/sq. mi)				(lbs./sq. mi	i)			
Yields	4,741	0.8	0.3	0.5	0.05	0.1	157	14	

Constituent loads from the April 6-7, 2018 storm event exhibited a wide range, depending on constituent and location. In general, the monitoring station with the larger contributing area showed higher loads, likely the direct result of higher runoff volumes. However, precipitation was spatially variable over both watersheds. For instance, North Truckee Drain registered the lowest rainfall totals relative to areas the drain Mary Wahl Drain.

For comparison purposes and simplicity, we discuss yield values reported in **Figure 5-8**. Stormwater runoff from Mary Wahl Drain, an urban outfall, exhibited higher yields across

all constituents when compared to North Truckee Drain. For example, Mary Wahl Drain discharged total nitrogen yields (23 lbs./sq. mile) more than 28 times that measured in North Truckee Drain (0.8 lbs./sq. mile). Similarly, Total-P yields from Mary Wahl Drain (1.3 lbs./sq. mile) was 26 times that measured from North Truckee Drain (0.05 lbs./sq. mile). These results may be the result of heavily urbanized land-uses in Mary Wahl drainage and limited opportunities for nutrient cycling, typically provided by vegetated areas including riparian, forests and wetlands.

5.5.1 Baseflow Loads (24-Hours) from Steamboat Creek and North Truckee Drain

Baseflow or non-storm constituent loads and yields were evaluated in Steamboat Creek at Clean Water Way in the summer (September 2017) and the winter (February 2018) of FY2018. North Truckee Drain was under relocation during the summer 2017 baseflow period and was not sampled using an automated sampler. However, winter baseflow was sampled from Steamboat Creek, North Truckee Drain and Yori Drain (new station as of October 2017). Baseflow sample collection began at noon on a given day and continued hourly until noon on the following day. Samples were composited into 4 groups to represent: (1) afternoon (12:00 - 17:00); (2) evening (18:00 - 23:00); (3) early morning (0:00 - 5:00); and (4) late morning (6:00 - 11:00). Loads are calculated for each period and at each station. Yields are provided for each station across all constituents.

Summer baseflow loads and yields for Steamboat Creek at Clean Water Way are presented in **Table 5-7**. Steamboat Creek baseflow in September was higher relative to previous years and can be attributed to significant precipitation and runoff in the previous winter and spring. In fact, summer baseflow in Steamboat Creek is less than 10 cfs in a typical year. During the 24-hour baseflow period studied, Steamboat Creek flow rates ranged between 65 cfs and 70 cfs and discharged over 9 million cubic feet of water to the Truckee River. Under these summer baseflow conditions, Total-N loads from Steamboat Creek were measured to be 526 lbs.; Total-P loads were measured to be 115 lbs.; and TDS loads were measured to be 163,457 lbs.

We should also note that Steamboat Creek has also been characterized as a gaining stream (Shump, 1985), in which groundwater discharges to the stream in the reach above the monitoring station. Groundwater quality is not part of this special study or program so additional investigations to discern the influence of groundwater quality on streamflow are warranted.

Table 5-7 Summer Baseflow Volumes and Constituent Loads for Steamboat Creek, September 19-20, 2017

		Steam	boat Creek	at Clean W	/ater Way				
			Baseflow Loads						
Hydrograph	Flow Volume	Total-N	NO ₃	TKN	Total-P	Ortho-P	TDS	TSS	
	(cubic feet)				(lbs	:)			
Afternoon	1,061,820	58	17	41	13	9.3	18,560	1,790	
Evening	1,998,720	117	32	85	24	16	32,442	4,617	
Early Morning	2,560,860	144	42	102	29	21	44,763	6,874	
Late Morning	3,497,760	207	55	153	50	31	67,691	8,079	
Totals	9,119,160	526	146	381	115	77	163,457	21,360	
	(cf/sq. mi)				(lbs./sq	ı. mi)			
Yields	37,374	2.2	0.6	1.6	0.5	0.3	670	88	

Steamboat Creek may receive irrigation return flows during this period, imported from outside the watershed.

Winter baseflow loads and yields for three tributaries are presented in **Table 5-8**. During the 24-hour baseflow period studied, North Truckee Drain flow rates ranged between 3.94 cfs and 3.96 cfs and discharged over 155,000 cubic feet of water to the Truckee River. Steamboat Creek flow rates ranged between 54 cfs and 56 cfs and discharged over 4.7 million cubic feet of water to the Truckee River. Flow rates in Yori Drain, a tributary to Steamboat Creek, ranged between 3.5 cfs to 4.0 cfs, and discharged over 321,000 cubic feet of water to Steamboat Creek. Inherent in these comparisons, is that the Steamboat Creek at Clean Water Way station includes the flow received from Yori Drain.

Under winter baseflow, Steamboat Creek discharges the highest constituent loads to the Truckee River, when compared to North Truckee Drain. For example, 321 lbs. Total-N was measured from Steamboat Creek compared with 22 lbs. Total-N measured from North Truckee Drain. Similarly, 61 lbs. Total-P was measured from Steamboat Creek compared with 1.2 lbs. measured from North Truckee Drain.

Steamboat Creek drains a watershed measuring 244 square miles. In FY2018, we instrumented a tributary to Steamboat Creek, Yori Drain, that measures approximately 4.2 square miles, less than 2 percent of the total Steamboat Creek watershed, but an area that includes urban concentrations of the City of Reno, including a significant portion of the Reno-Tahoe International Airport as well as agricultural areas including UNR Farms. Loads from this tributary were measurable. For example, Total-N loads measured 44 lbs., roughly 14 percent of the loads measured downstream in Steamboat Creek at Cleanwater Way. Similarly, Total-P loads measured 1.8 lbs. or roughly 3 percent of the Total-P loads measured downstream in Steamboat Creek at Cleanwater Way.

Table 5-8 Winter Baseflow Volumes and Constituent Loads for Three Tributaries to the Truckee River, February 6-7, 2018

		North	Truckee D	rain at Big F	ish Drive			
					Baseflow	/ Loads		
Hydrograph	Flow Volume	Total-N	NO ₃	TKN	Total-P	Ortho-P	TDS	TSS
	(cubic feet)				(lbs	:)		
Afternoon	39,816	6.0	3.5	2.7	0.3	0.2	2,983	109
Evening	38,592	5.3	3.4	2.0	0.3	0.2	2,891	24
Early Morning	38,232	5.0	3.1	1.8	0.3	0.2	2,864	26
Late Morning	38,520	5.3	3.1	2.0	0.3	0.2	2,886	26
Totals	155,160	22	13	8.5	1.2	0.7	11,624	186
	(cf/sq. mi)				(lbs./sq	ı. mi)		26 186
Yields	1,552	0.2	0.1	0.1	0.01	0.01	116	1.9

		Yo	ri Drain at S	Steamboat	Creek			
					Baseflov	v Loads		
Hydrograph	Flow Volume	Total-N	NO ₃	TKN	Total-P	Ortho-P	TDS	TSS
	(cubic feet)				(lbs	;)		
Afternoon	83,379	11	7.8	3.5	0.5	0.2	1,874	125
Evening	80,490	11	7.0	3.1	0.5	0.2	1,859	126
Early Morning	79,034	11	7.4	3.9	0.4	0.2	1,875	74
Late Morning	78,452	11	7.3	3.6	0.5	0.3	1,763	196
Totals	321,354	44	30	14	1.8	1.0	7,371	520
	(cf/sq. mi)				(lbs./sc	д. mi)		
Yields	76,513	11	7.0	3.4	0.4	0.2	1755	124

		Steam	boat Creek	at Clean W	/ater Way				
	Baseflow Loads								
Hydrograph	Flow Volume	Total-N	NO ₃	TKN	Total-P	Ortho-P	TDS	TSS	
	(cubic feet)				(lbs)			
Afternoon	1,205,280	83	26	53	15	14	25,583	2,408	
Evening	1,199,340	82	25	57	15	15	24,708	2,845	
Early Morning	1,189,530	74	25	52	15	15	25,991	2,302	
Late Morning	1,184,040	81	25	56	16	16	23,654	1,996	
Totals	4,778,190	321	101	218	61	60	99,935	9,551	
(cf/sq. mi) (lbs./sq. mi)									
Yields	19,583	1.3	0.4	0.9	0.3	0.2	410	39	

Yields are estimates based on contributing watershed areas provided by City of Reno, City of Sparks, USGS or other entity. Steamboat Creek may receive irrigation return flows imported from outside the watershed.

Yori Drain is a tributary to Steamboat Creek.

Comparisons between summer and winter baseflow loads can only be completed for Steamboat Creek at Clean Water Way in FY2018. Summer loads were higher than winter loads but may be related to the greater flow volumes measured during summer of 2017, an historically high runoff year.

5.5.2 STORMWATER LOADS COMPARED TO TOTAL MAXIMUM DAILY LOADS ESTABLISHED FOR THE TRUCKEE RIVER AT LOCKWOOD

In this section, we compare measured loads to allocated loads under established TMDLs for 3 constituents: Total-N, Total-P, and TDS in the Truckee River (at Lockwood). Comparisons are presented by storm in the order that the storms occurred. If stormwater runoff event was measured to be less than 24 hours, we assumed the total storm load to approximate a daily load. If stormwater runoff event exceeded 24 hours, we show the highest 24-hour load based on the highest 24-hour stormwater runoff volume.

Table 5-9 shows daily loads measured in stormwater runoff on August 6, 2017, in comparison to TMDLs established for the Truckee River at Lockwood.

Table 5-9 Daily Loads Measured in Stormwater Runoff, August 6, 2017

Daily Loads: August 6, 2017 Stor	mwater Loa	ds	
		Constituen	ts
Monitoring Station	Total-N	Total-P	TDS
Urban Outfalls		(lbs)	
Arlington	1.9	0.2	39
Totals	1.9	0.2	39
Load Allocations, TMDL Truckee River at Lockwood	500	80	780,360
Daily Load, Percent of Load Allocation under TMDL	0.4%	0.2%	0.01%

Notes:

Storm runoff duration was less than 24 hours

Load Allocation for the TMDLs represent the total expected or allowable load from non-point and background sources TMDLs for Total-N, Total-P, and TDS established in 1994 (NDEP, 1994)

Total-N daily loads from a single urban outfall (Arlington) totaled roughly 1.9 lbs., 0.2 lbs. of Total-P, and 39 lbs. of TDS. These daily loads represent less than 1 percent of the load allocations under the Truckee River TMDL for these constituents. However, these loads only represent one point of discharge or an area equivalent to 0.32 square miles.

Table 5-10 shows daily loads measured from stormwater runoff measured from two urban outfalls during the September 6, 2017 storm event and compared to TMDLs established for the Truckee River at Lockwood.

Table 5-10 Daily Loads Measured from Stormwater Runoff, September 6, 2017

Daily Loads: September 6, 2017 Sto	rmwater Loa	ads	
		Constituen	ts
Monitoring Station	Total-N	Total-P	TDS
Urban Outfalls		(lbs/day)	
Arlington	3.3	0.2	70
Oxbow Nature park	3.5	0.2	136
Totals	6.8	0.4	206
Load Allocations, TMDL Truckee River at Lockwood	500	80	780,360
Daily Load, Percent of Load Allocation under TMDL	1.4%	0.5%	0.03%

Notes:

Storm duration was less than 24 hours

Load Allocation for the TMDLs represent the total expected or allowable load from non-point and background sources TMDLs for Total-N, Total-P, and TDS established in 1994 (NDEP, 1994)

Total-N daily loads from both points of discharge totaled roughly 6.8 lbs. or 1.4 percent of the load allocated under the TMDL for Total-N. Total-P daily loads from both points of discharge totaled roughly 0.4 lbs. or 0.5 percent of the load allocated under the TMDL. TDS daily loads totaled 206 lbs., or roughly 0.03 percent of the load allocated under the TMDL. Of this TDS load, approximately 66 percent originated from Oxbow Nature Park urban outfall. Similar to the August 6, 2017 event, these loads only represent two points of discharge or an area equivalent to 0.68 square miles.

Table 5-11 shows daily loads measured in stormwater runoff from three urban outfalls and two major tributaries to the Truckee River during the November 15-17, 2017 storm event and compared to TMDLs established for the Truckee River at Lockwood. Daily precipitation for this event exceeded daily records with most areas in the Truckee Meadows receiving an inch or more of rainfall. Because the event duration exceeded 24 hours, maximum daily loads were evaluated using the highest period of maximum runoff volume and associated constituent concentrations.

Table 5-11 Daily Loads Measured from Stormwater Runoff, November 16-17, 2017

Daily Loads: November 16-17, 2017 Stormwater Loads												
		Constituer	nts									
Monitoring Station	Total-N	Total-P	TDS									
Urban Outfalls		(lbs/day)										
Oxbow Nature Park	16	2.9	396									
Mary Wahl	52	4.7	2,378									
Fisherman's II	32	3	1,002									
Tributaries		(lbs/day)										
Steamboat Creek at Clean Water Way	5,979	479	741,823									
North Truckee Drain at Big Fish Drive	204	25	19,911									
Totals	6,284	514	765,509									
Load Allocations, TMDL Truckee River at Lockwood	500	80	780,360									
Daily Load, Percent of Load Allocation under TMDL	1257%	643%	98%									

Fisherman's II loads are underestimates due to power failure during sampling

Load Allocation for the TMDLs represent the total expected or allowable load from non-point and background sources TMDLs for Total-N, Total-P, and TDS established in 1994 (NDEP, 1994)

Storm exceeded 24 hours in duration; maximum daily load computed using highest 24-hour runoff volume and associated constituent concentrations

Total-N daily loads from 5 points of discharge totaled roughly 6,284 lbs. or 1,257 percent of the load allocated under the TMDL for Total-N. Of this daily Total-N load, approximately 95 percent originated from Steamboat Creek. Total-P daily loads from all 5 points of discharge totaled roughly 514 lbs. or 643 percent of the load allocated under the TMDL. Of this daily Total-P load, approximately 93 percent originated from Steamboat Creek. TDS daily loads totaled 765,509 lbs., or roughly 98 percent of the load allocated under the TMDL. Of this daily TDS load, approximately 97 percent originated from Steamboat Creek. Peak flow measured at the USGS gage on Steamboat Creek at Clean Water Way recorded 495 cfs or a flow equivalent to a 2- or 3-year flood, based on the 23-year period of record. We also note that pre- and post-storm baseflow was elevated as a result of the wettest year on record (NWS, 2017). As such, these daily loads may be reflective of an extreme year.

Table 5-12 shows daily loads measured in stormwater runoff from a single urban outfall to the Truckee River during the January 18, 2017 storm event and compared to TMDLs established for the Truckee River at Lockwood.

Table 5-12 Daily Loads Measured from Baseflow in Steamboat Creek, January 18, 2018

Daily Loads: January 18, 2018 Storr	nwater Load	ds	
		Constituent	ts
Monitoring Station	Total-N	Total-P	TDS
Urban Outfalls		(lbs/day)	
Fisherman's Park II	3.4	0.5	154
Totals	3.4	0.5	154
Load Allocations, TMDL Truckee River at Lockwood	500	80	780,360
Daily Load, Percent of Load Allocation under TMDL	0.7%	0.6%	0.02%

Storm runoff duration was roughly 5 hours

Load Allocation for the TMDLs represent the total expected or allowable load from non-point and background sources TMDLs for Total-N, Total-P, and TDS established in 1994 (NDEP, 1994)

Total-N daily loads from a single urban outfall (Fisherman's Park II) totaled roughly 3.4 lbs., 0.5 lbs. of Total-P, and 154 lbs. of TDS. These daily loads represent less than 1 percent of the load allocations under the Truckee River TMDL for these constituents. However, these loads only represent one point of discharge or an area equivalent to 5.1 square miles.

Table 5-13 shows daily loads measured in stormwater runoff from a single urban outfall and a major tributary to the Truckee River during the April 6-7, 2018 storm event and compared to TMDLs established for the Truckee River at Lockwood. Precipitation and runoff patterns for this event resulted in multiple peak flows. Samples were only collected on the initial peak flow event. As a result, loads are likely underestimates of the total storm.

Table 5-13 Daily Loads Measured from Stormwater Runoff, April 6-7, 2018

Daily Loads: April 6-7, 2018 Storm	water Loads	5	
	(Constituent	ts
Monitoring Station	Total-N	Total-P	TDS
Urban Outfalls		(lbs/day)	
Mary Wahl	57	3.3	4,753
Tributaries			
North Truckee Drain at Big Fish Drive	77	4.8	15,661
Totals	134	8.1	20,414
Load Allocations, TMDL Truckee River at Lockwood	500	80	780,360
Daily Load, Percent of Load Allocation under TMDL	27%	10%	3%

Load Allocation for the TMDLs represent the total expected or allowable load from non-point and background sources TMDLs for Total-N, Total-P, and TDS established in 1994 (NDEP, 1994)

Loads measured in this event are underestimates; rainfall and runoff resulted in two distinct peak flows; only the first peak was sampled and loads calculated.

Total-N daily loads from a single urban outfall (Mary Wahl Drain) and a major tributary to the Truckee River (North Truckee Drain) totaled roughly 134 lbs. or roughly 27 percent of the load allocated under the TMDL for Total-N. Total-P daily loads totaled roughly 8.1 lbs. or roughly 10 percent of the load allocated under the TMDL for Total-P. TDS daily loads totaled about 20,414 lbs. or roughly 3 percent of the load allocated under the TMDL for TDS. Given that these were underestimates for the total storm, based on the storm hydrographs, we estimate that the actual loads may be twice that reported in **Table 5-13**.

5.5.3 BASEFLOW LOADS COMPARED TO TOTAL MAXIMUM DAILY LOADS ESTABLISHED FOR THE TRUCKER RIVER AT LOCKWOOD

In addition to daily stormwater loads, we also evaluated daily baseflow loads for available data on two major tributaries that discharge to the Truckee River: Steamboat Creek and North Truckee Drain, relative to the TMDLs. Baseflow sampling followed a 10-day period absent of precipitation but during a period of above average streamflow. Daily, summer baseflow load measured from Steamboat Creek for a 24-hour period sampled September 19-20, 2017 as compared with TMDLs is presented in **Table 5-14**.

Table 5-14 Daily Loads Measured from Baseflow in Steamboat Creek, September 19-20, 2017

Daily Loads: September 19-20, 2017	Baseflow Lo	ads	
		Constituen	ts
Monitoring Station	Total-N	Total-P	TDS
Urban Outfalls	·	(lbs/day)	
Steamboat Creek at Clean Water Way	526	115	163,457
Load Allocations, TMDL Truckee River at Lockwood	500	80	780,360
Daily Load, Percent of Load Allocation under TMDL	105%	144%	21%

Load Allocation for the TMDLs represent the total expected or allowable load from non-point and background sources TMDLs for Total-P, and TDS established in 1994 (NDEP, 1994)

Total-N daily baseflow load from Steamboat Creek totaled roughly 526 lbs. or roughly 105 percent of the load allocated under the TMDL for Total-N. Total-P daily baseflow load totaled roughly 115 lbs. or roughly 144 percent of the load allocated under the TMDL for Total-P. TDS daily baseflow load totaled about 163,457 lbs. or roughly 21 percent of the load allocated under the TMDL for TDS. As noted earlier in this report, 2017 calendar and water years were the wettest on record. Baseflows in Steamboat Creek during this period were twice that of the long-term median for the same period based on a 23-year period of record. Exceedance of the TMDLs load allocations under baseflow conditions may be an infrequent occurrence, as these results may be characteristics of an extremely wet year.

Daily winter baseflow load measured from both Steamboat Creek and North Truckee Drain as compared with TMDLs is presented in **Table 5-15** for a 24-hour period sampled February 6-7, 2018.

Table 5-15 Daily Load Measured from Baseflow in Steamboat Creek and North Truckee Drain, February 6-7, 2018

Daily Loads: February 6-7, 2018 Ba	seflow Load	ls	
		Constituent	ts
Monitoring Station	Total-N	Total-P	TDS
Tributaries		(lbs/day)	
North Truckee Drain at Big Fish Drive	22	1.2	11,624
Steamboat Creek at Clean Water Way	321	61	99,935
Totals	342	62	111,559
Load Allocations, TMDL Truckee River at Lockwood	500	80	780,360
Daily Load, Percent of Load Allocation under TMDL	68%	78%	14%

Load Allocation for the TMDLs represent the total expected or allowable load from non-point and background sources TMDLs for Total-N, Total-P, and TDS established in 1994 (NDEP, 1994)

Total-N daily baseflow load from these two major tributaries totaled roughly 342 lbs. or roughly 68 percent of the load allocated under the TMDL for Total-N. Total-P daily baseflow loads totaled roughly 62 lbs. or roughly 78 percent of the load allocated under the TMDL for Total-P. TDS daily baseflow loads totaled about 111,559 lbs. or roughly 14 percent of the load allocated under the TMDL for TDS. Other non-point and background sources of loads can originate from other smaller tributaries in the Truckee Meadows and illicit discharges to the stormdrain network.

We also measured winter baseflow volume and loads from Yori Drain at Steamboat Creek, tributary to Steamboat Creek, February 6-7, 2018 (**Table 5-16**). We present these daily loads separately since they represent a portion of the Steamboat Creek daily loads presented in **Table 5-15**. Because Steamboat Creek continues to exhibit the highest loads to the Truckee River, measurement of loads from a subwatershed (i.e., Yori Drain) within the greater Steamboat Creek watershed provides insight into the possible areas or source of loads.

Table 5-16 Daily Load Measured from Baseflow in Steamboat Creek and North Truckee Drain, February 6-7, 2018

Daily Loads: February 6-7, 2018 B	aseflow Lo	ads	
	(Constituent	:S
Monitoring Station	Total-N	Total-P	TDS
Tributaries		(lbs/day)	
Yori Drain at Steamboat Creek	44	1.8	7,371
Load Allocations, TMDL Truckee River at Lockwood	500	80	780,360
Daily Load, Percent of Load Allocation under TMDL	9%	2%	1%

Load Allocation for the TMDLs represent the total expected or allowable load from non-point and background sources TMDLs for Total-N, Total-P, and TDS established in 1994 (NDEP, 1994)

Yori Drain is a tributary to Steamboat Creek and measures roughly 4.2 square miles or less than 2% of the Steamboat Creek watershed

Total-N daily baseflow load from this sub-watershed of Steamboat Creek totaled roughly 44 lbs. or roughly 9 percent of the load allocated under the TMDL for Total-N. Total-P daily baseflow loads totaled roughly 1.8 lbs. or roughly 2 percent of the load allocated under the TMDL for Total-P. TDS daily baseflow loads totaled about 7,371 lbs. or roughly 1 percent of the load allocated under the TMDL for TDS. Future storm and baseflow sampling at this station and other sub-watersheds in Steamboat Creek will improve our understanding of sources and source locations of excess nutrients to the Truckee River.

6 CONCLUSIONS

This report presents results from the FY2018 monitoring year and summarizes both stormwater and baseflow (ambient) conditions for selected stations in the Truckee Meadows Permit Area. Data are representative of the storms and baseflow conditions sampled and may not be characteristic of other periods that were not sampled. Furthermore, this report does not provide an analysis of trends over time, but instead captures conditions and water quality measured in FY2018 per the requirements of the permit.

Total annual precipitation in the Truckee Meadows in FY2018, as measured at the Reno-Tahoe International Airport, was slightly above the long-term normal of 7.40 inches. Multiple storms were sampled in FY2018 to meet the required 2 samples per station. Storms were characteristic of the Truckee Meadows and included both frontal and convective storm types. Baseflow conditions were sampled in both summer and winter to characterize water quality condition in major tributaries to the Truckee River in the Truckee Meadows.

NDEP has established water quality standards (WQS) in listed waters based on concentration. We summarize only 3 constituents here (Total-N, Total-P, and TDS) for which there are TMDLs established for on the Truckee River. Across all storms sampled at all stations Total-N concentrations in stormwater exceeded WQS in all storms and at all locations where WQS are established. Total-N concentrations in tributary baseflow also exceed WQS across all locations sampled and where WQS are established. Highest stormwater concentrations were measured from urban outfalls. Whereas the highest baseflow concentrations were measured from North Truckee Drain and Yori Drain.

Total-P is a limiting nutrient in surface waters when in excess. Single value WQS do not exist for Total-P in most of the waters monitored; however, annual averages are typically provided and suggest concentrations do not exceed between 0.05 mg/L and 0.10 mg/L over the long-term. Across all storms sampled at all stations Total-P concentrations in stormwater ranged between 0.47 mg/L and 1.4 mg/L. Highest stormwater Total-P concentrations were measured from most stormwater urban outfalls. Total-P concentrations in tributary baseflow ranged between less than 0.1 mg/L to as high as 0.36 mg/L, suggesting that Total-P concentrations may exceed long-term averages if extrapolated.

TRUCKEE MEADOWS STORMWATER MONITORING FY2018 ANNUAL DRAFT REPORT

TDS concentrations measured from stormwater exceeded WQS in most samples with few exceptions. Similarly, baseflow TDS concentrations exceeded WQS with few exceptions. In some cases, TDS concentrations exceeded stormwater concentrations which may suggest irrigation returns, illicit discharges, or other sources that occur during non-precipitation runoff.

Physical parameters measured from both stormwater and baseflow also suggest conditions that exceed WQS and include turbidity and pH. Temperature and dissolved oxygen were generally within an acceptable range or met WQS with few exceptions.

Stormwater and baseflow loads were quantified at stations with streamflow gage instrumentation and automated samplers—which allowed for multiple samples to be collected over a stormwater hydrograph or time. Loads measured in FY2018 suggest that both stormwater urban outfalls and tributaries can contribute significant nutrient loading to receiving waters. In fact, Steamboat Creek loads exceeded TMDLs established for the Truckee River for Total-N and Total-P in one storm event (November 2017) as well as summer baseflow (September 2017).

Loads measured suggest that both spatial and temporal scales are important. For example, tributaries draining large areas typically measure the highest loads; however, if stations are compared by yields, areas with more urban land-uses typically are responsible for higher pollutant yields. On a temporal scale, fall frontal storms generate higher loads than storms measured in other times of the year. These results may reflect the time since last rainfall-runoff event; fall frontal storms typically occur after a long dry period when pollutants accumulate over time and are flushed into local waters by the first large storm event, also informally known as the first flush.

7 RECOMMENDATIONS

Results continue to suggest that stormwater and baseflow pollutant (nutrients) loading are elevated from Steamboat Creek and to a lesser extent, North Truckee Drain and some of the stormwater urban outfalls draining large areas. In FY2019, we will continue to sample these tributaries using automated samplers during baseflow and major storm events to better evaluate seasonal or annual variations in nutrient loads. Additional automated sampling station has been installed on Yori Drain and Boynton Slough, tributaries to Steamboat Creek. This nesting approach to sampling will allow potential source areas of excess nutrients or other pollutants measured to be identified. If feasible, we will always attempt to quantify loadings at these nested stations with Steamboat Creek at Clean Water Way in the same event such that results can be compared.

Quantification and comparison of loads and yields can assist co-permittees in the Truckee Meadows in relating these findings to areas of concern, so that appropriate management practices to improve stormwater and baseflow quality can be developed or ordinances for new development enforced. Currently, we have observed <u>higher nutrient loadings measured during the first flush</u>, or during a large frontal storm that <u>typically occur in the fall of each year</u>. Therefore, it may be <u>prudent to implement annual stormwater BMPs in the late summer, early fall to reduce these loads</u>. BMPs may include street sweeping, vacuuming of storm drains, general litter pick-up, and enforcing construction BMPs.

We anticipate that a <u>new Truckee Meadows MS4 permit</u> and a revised Nevada 303(d) list of impaired water bodies will be issued sometime in FY2019. At that time, we recommend that a meeting is convened between Balance Hydrologics and the SWPCC to discuss changes associated with the new permit and listings of new tributaries or delisting of currently listed tributaries or water bodies and how they influence or modify this program.

Balance is currently in the process of completing a <u>special study that evaluates water</u> <u>quality over the years for the water bodies monitored as part of this program</u>. Results may also provide insight into which water bodies are improving and which ones continue to degrade. Results may also inform changes to the program including relocated monitoring stations, new constituents to be measured or monitoring to be discontinued.

Finally, bacteria (i.e., e. coli, total coliform) is identified as a constituent limiting water quality in many of the tributaries monitored. However, holding times (6 hours) required to

TRUCKEE MEADOWS STORMWATER MONITORING FY2018 ANNUAL DRAFT REPORT

perform the necessary analytical methods limit when samples can be collected. In many cases, samples are collected at times that do not facilitate immediate delivery to the lab and analysis (i.e., weekends, evenings). As a result, bacteria are not often quantified. If additional data is desired on this constituent, we suggest a special study is designed and implemented to facilitate a robust data set of bacteria counts in both stormwater and baseflow. The design would target storms or times that allow for the analytical holding times to be met.

8 LIMITATIONS

This report was prepared in general accordance with the accepted standard of practice in surface-water hydrology in Nevada for projects of similar scale at the time the investigations were performed. No other warranties, expressed or implied, are made. As is customary, we note that readers should recognize that the interpretation and evaluation of factors affecting the hydrologic context of any site is a difficult and inexact art. Judgments leading to conclusions and recommendations are generally made with an incomplete knowledge of the conditions present. More extensive or extended studies can reduce the inherent uncertainties associated with such studies.

Findings, interpretations and recommendations contained in this report are intended for the exclusive use of The Truckee Meadows Stormwater Permit Coordinating Committee, NDOT, and Western Regional Water Commission, under the conditions presently prevailing except where noted otherwise. This report and its contents have been developed solely to evaluate water quality at discrete locations in the Truckee Meadows for the sole purposes and in the context described above. Data, interpretations and analyses developed for this report may not be directly applicable to other uses. Balance Hydrologics, Inc. should be consulted prior to applying the contents of this report to stormwater BMP design, drainage or flooding management or for any other purposes not specifically cited in this report.

Finally, we ask that readers who have additional pertinent information, who observed changed conditions, or who may note material errors should contact us with their findings at the earliest possible date, so that timely changes may be made.

9 REFERENCES

- Boyd, C. E., 1999, Water quality: An introduction. The Netherlands: Kluwer Academic Publishers Group.
- Burton, G.A., and Pitt, R.E., 2002, Stormwater effects handbook: A toolbox for watershed managers, scientists, and engineers, Lewis Publishers, Washington DC, 911 p.
- Carter, R.W., and Davidian, J., 1968, Techniques of water-resources investigations of the U.S. Geological Survey: Book 3, Applications of Hydraulics, chapter A6: General procedure for gaging streams, 60 p.
- City of Reno, 2015, Stormwater maps, unpublished data
- City of Sparks, 2013, Sparks stormdrain system map, 1:12,500
- Denver, J.M., Cravotta, C.A., Ator, S.W., and Lindsey, B.D., 2010, Contributions of phosphorus from groundwater to streams in the Piedmont, Blue Ridge, and Valley and Ridge physiographic provinces, Eastern United States, U.S. Geological Survey, Scientific Investigations Report 2010-5176, 38 p.
- Edwards, T.K., and Glysson, G.D., 1999, Techniques of water-resources investigations of the U.S. Geological Survey: Book 3, Applications of Hydraulics, chapter C2, Field methods for measurement of fluvial sediment, 60 p.
- Harmel, R.D., King, K.W., and Slade, R.M., 2003, Automated stormwater sampling on small watersheds, Applied Engineering in Agriculture, v. 19, no. 6, pp. 667-674.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural waters, third edition, U.S. Geological Survey Water-Supply Paper 2254, 264 p.
- JBR Environmental, 2010, Chalk Creek watershed characterization, City of Reno, Nevada; consulting report prepared for the City of Reno Public Works Department, 100 p.
- Jones, P., Hunt, W., and Smith, J., 2007, The Effect of Urban Stormwater BMPs on Runoff Temperature in Trout Sensitive Waters. Restoring Our Natural Habitat Proceedings of the 2007 World Environmental and Water Resources Congress. v15. 1-9. 10.1061/40927(243)438.
- MacDonald, L.H., Smart, A.W., and Wissmar, R.C., 1991, Monitoring guidelines to evaluate effects of forestry activities on streams in the Pacific Northwest and Alaska, EPA 910/9-91-001, 166 p.
- Manhard Consulting Ltd., 2010, Planning-level regional hydrologic analysis, consulting report prepared for the City of Reno, multi-page document with appendices.
- McKay, A., Heyvaert, A., Fitzgerald, B., Memmott, J., and Miller, M., 2013, Stormwater grab sampling of Truckee River outfalls and tributaries within the Truckee Meadows, Desert Research Institute, Division of Hydrologic Sciences report prepared for the Stormwater Permit Coordinating SWPCC, Cities of Reno, Sparks, and Washoe County, 71 p. + appendices.
- National Weather Service (NWS), 2017, Annual climate report for December 31, 2017, https://w2.weather.gov/climate/getclimate.php?wfo=rev

- Nevada Administrative Code (NAC) 445a., Water pollution controls
- Nevada Department of Environmental Protection (NDEP), 2016, Nevada 2014 Water quality integrated report, Bureau of Water Quality Planning, prepared in accordance with the requirements of Sections 303(d)/305(b)/314 of the Clean Water Act, 30 p. + attachments
- Nevada Department of Environmental Protection (NDEP), 2014, 2012 Water quality integrated report, prepared in accordance with the requirements of Sections 303(d)/305(b)/314 of the Clean Water Act, Statewide fecal coliform, 19 p.
- Nevada Department of Environmental Protection (NDEP), 2012, Draft rationale for proposed revisions to the Nevada water quality regulations NAC 445A.1256 to NAC 445A.2214, Statewide fecal coliform, 19 p.
- Nevada Department of Environmental Protection (NDEP), 2010, Permit No. NV\$000001, permit for authorization to discharge from Municipal Separate Storm Sewer Systems to Waters of the United States under the NPDES, 28 p.
- O'Hara, B., 2006, Climate of Reno, Nevada: NOAA Technical Memorandum NWS WR-267, 116 p.
- Omni-Means, Ltd Engineers and Planners, 1984, Downtown Reno redevelopment project, phase 1, Cascade water delivery plan, Arlington Avenue, STA. 4+00 to 10+34, Sheet # RC-20.
- Romeis, J.J., 1999, Evaluating non-point nutrient pollution in Steamboat Creek, Nevada: MS thesis, University of Nevada, Reno, 140 p. + appendices.
- Shump, K.W., 1985, Streamflow and water quality effects of groundwater discharge to Steamboat Creek, Reno, Nevada, MS thesis, University of Nevada, Reno, 101 p.
- Skalbeck, J.D., Shevenell, L., and Widmer, M.C., 2002, Mixing of thermal and non-thermal waters in the Steamboat Hills area, Nevada, Geothermics, v. 31, Issue 1, 22 p.
- Stantec, 2012, Stormwater monitoring and sample analysis plan, Stantec Consulting Services, Inc. report prepared for the Truckee Meadows Stormwater Permit Coordinating SWPCC, multipaged + appendices.
- Stantec, 2011, Stormwater management program (SWMP), Stantec Consulting Services, Inc. report prepared for the Truckee Meadows Stormwater Permit Coordinating SWPCC, multipaged + appendices.
- Steeland, K., 2018, personal communication, Hydrologist, Truckee Meadows Water Authority, Reno, Nevada, (775) 834-8204
- Terrene Institute, 1996, A watershed approach to urban runoff: Handbook for decision makers, Region 5, U.S. Environmental Protection Agency.
- Turnipseed, D.P, and Sauer, V.B., 2010, Discharge measurements at gaging stations, Techniques and methods of the U.S. Geological Survey: Book 3: Application of Hydraulics, chapter A8, 60 p.

TRUCKEE MEADOWS STORMWATER MONITORING FY2018 ANNUAL DRAFT REPORT

- Trustman, B., Hastings, B., and Shaw, D., 2017, Stormwater sampling and analysis plan (SAP), Truckee Meadows regional stormwater quality management program, Balance Hydrologics report prepared for the City of Reno, in cooperation with Nevada Department of Transportation, City of Sparks, Washoe County, and Western Regional Water Commission, 51 p. + appendices.
- United States Environmental Protection Agency (USEPA), 1999, Preliminary data summary of urban stormwater best management practices, EPA-821-R-99-012, U.S. Environmental Protection Agency (USEPA), Office of Water, Washington D.C., Part B, (Chapter 4).
- United States Geological Survey (USGS), 1981, Guidelines for determining flood flow frequency, Bulletin #17B of the Hydrology Subcommittee, Interagency Advisory Committee on Water Data, 194 p.
- Wetzel, R. G., 2001, Limnology: Lake and River Ecosystems (3rd ed.). San Diego, CA: Academic Press.
- YSI. (2005). Environmental Dissolved Oxygen Values Above 100% Air Saturation. In YSI Environmental Tech Note.
 - https://www.ysi.com/File%20Library/Documents/Technical%20Notes/T602-Environmental-Dissolved-Oxygen-Values-Above-100-percent-Air-Saturation.pdf

APPENDIX A Station Observer Logs

Station Observer Log: Arlington Street (H-19)

Site Conditions				Pipe or S	Streamflo	W	Water 0	Quality Obs	ervations						Remarks
Date/Time (observer time)	Observer	Stage	Hydrograph	Flow	Streamflow Source	Estimated Accuracy	Water Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	Hd	Turbidity	Samples collected?	
		(feet)	(R/F/S/B)	(cfs)	(M, R, E)	(e/g/f/p)	(oC)	(µmhos/cm)	(at 25 oC)	(%)	(mg/L)		(NTU)	(yes/no)	
8/5/2017 14:20	bt	0.03	dry												Loaded ISCO with ice and set for measurement of 0.2 inches of rain and start at 0.1 ft. stage; forecast is widespread showers with some convection over Reno area for evening and high probability of thunderstorms on 8/6
8/7/2017 8:30	bt	0.02	dry										44.96, 111.6, 170.7, 237.8	yes	Strong thunderstorm on 8/6/17 at 16:00 filled 23 bottles; Ice had melted and samples were in cool water; WQ taken back at office after samples in cooler; First Flush (H-19(1)): T 7.60°C, C 86.4, SC127.9, DO 56% 6.4mg/l, pH 7.05; Rising Limb (H-19(2)): T 4.1°C, C54, SC 89.9, DO 56% 7.3 mg/l, pH 6.37; Peak (H-19(3)): T 8.3°C, C 62.5, SC 91.9, DO 26% 3.0 mg/l, pH 5.97; Falling Limb (H-19(4)): T10.6°C, C 72.7, SC 99.8, DO 26% 2.8 mg/l, pH 6.26
9/6/2017 14:17	bt	0.03	dry											no	Culvert dry; little debris in culvert; set ISCO to sample flow based starting at >0.06 ft at 379 cf based on forecast 0.18 inches of rain; iced and added bottles
9/7/2017 11:08	bt,jj	0.02	dry										133.8, 266.9, 135.7, 141.9	yes	13 sample bottles filled; hydrograph and sample report showed first sample taken at beginning of flow and second sample taken at peak so no rising limb sample processed; First Flush (H-19(1)): T 15.0°C, C 366.5, SC 452, DO 49% 4.21 mg/l, pH 6.78; Peak (H-19(3)): T 14.7°C, C 147, SC 182.9, DO 24% 2.10 mg/l, pH 6.55; Falling Limb (H-19(4)): T 15.1°C, C 141.1, SC 173.9, DO 23% 1.96mg/l, pH 6.47; Duplicate sample processed using H-19(4) sample labeled Arlinton@TR 17:00

Observer Key: (bt) is Ben Trustman, (jj) is Jack Jacquet

Stage: Water level recorded on ISCO.

Hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)

 $Streamflow \ Source: \ measured \ by \ a \ hydrologist \ (M), \ obtained \ from \ an \ existing \ rating \ curve \ or \ gaging \ station \ [R], \ or \ estimated \ E$

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - [0.050433063928 * field temp] + [0.00058561144042 * field temp^2]) * Field specific conductance

Station Observer Log: Mary Wahl Ditch (SDOE 008936)

Site Conditions				Pipe or S	Streamflov	/	Water (Quality Obs	ervations						Remarks
Date/Time (observer time)	Observer	Stage	Hydrograph	Flow	Streamflow Source	Estimated Accuracy	Water Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	Hd	Turbidity	Samples collected?	
		(feet)	(R/F/S/B)	(cfs)	(M, R, E)	(e/g/f/p)	(oC)	(µmhos/cm)	(at 25 oC)	(%)	(mg/L)		(NTU)	(yes/no)	
8/22/2017 14:19	bt	0.65	В	3.81	R	g									Iced and prepped for flow based sampling at 6400 cf, >0.85 ft based on forecast of 0.25 inches; call to NWS Reno confirms possibility of precipitation accumulation and thunderstorms starting to form in south Reno
8/23/2017 11:28	bt	0.56	В	3.15	R	g								no	No samples taken; capped bottles and removed ice; extra battery in box; turned off ISCO
9/6/2017 15:11	bt	0.27	В	1.20	R	f								no	ISCO level fluctuating between 0.265-0.379; tested 0.35 threshold for sampling to see if it samples at the threshold immediately or after sustained time at level-sample was taken immediately after threshold met; set flow based sample >0.39ft at 4430 cf based on forecast of 0.18 inches of rain
9/7/2017 12:23	bt, jj	0.31	В	0.83	R	f	17.9	402	470	86	7.0	7.41		no	No samples taken; capped bottles and turned off sampler; checked culvert and tested water quality
11/15/2017 11:52	bt,jj	0.16	В				16.0	795	960	98	8.3	8.27			Visual flow in outfall but not reading on ISCO; slight fuel smell upon opening the manhole cover; roads wetted from rain; currently not raining; iced and set flow based sample at 30,241 cf, >0.225 depth for a forecast of 1.0 inches of rain; reset clock for DLS; calibrated DO on YSI
11/16/2017 13:52	bt, jj	0.42	F	1.49	R	f	10.9	178	247	92	8.5	8.86			8 Samples taken; added ice; slight smell of fuel; samples look dark
11/17/2017 13:50	bt,bkh												83.25, 122.2, 117.1, 41.71	yes	11 samples taken; opened storm drain-plastic bags and garbage wrapped up on sensor arm; odors of fuel and skunk; removed garbage from sensor arm; First Flush (SDOE (1)): T 3.5°C, C 354, SC 598, DO 94% 10.6 mg/L, pH 8.10; Rising Limb (SDOE (2)): T 3.3°C, C 43, SC 74, DO 85% 9.78 mg/L, pH 8.10; Peak (SDOE (3)): T 3.3°C, C 50, SC 86, DO 85% 9.67mg/L, pH 9.05; Falling Limb (SDOE(4)): T 4.2°C, C 104, SC 172, DO 79% 8.87mg/L, pH 8.68
4/5/2018 18:51	bt	0.07	В												Downloaded RTD to check for backwatering; variable hydrograph with no indication of backwater; set ISCO flow based sample every 13,913cf using a forecast of 0.5 inches of rain; set to start at >0.125 ft; iced and filled with clean bottles
4/6/2018 13:02	bt, jj	0.97	U	2.7	R	f	12.7	130	169	89	8.02	7.94		no	One bottle sampled at 12:56; lots of plastic bags caught on intake hose structure; removed all plastic garbage
4/6/2018 17:17	bt, jj	1.19	U	5.6	R	f								no	Sampler on bottle 5; re-iced for overnight sampling
4/7/2018 11:39	bt	1.09	F	0.5	R	f							135.8, 126.5, 19.69, 54.76	yes	Unable to download RTD to computer; estimated composites based on timing and duration; 15 bottles sampled; (SDOE (1)): T 8.4°C, C 124.9, SC 182.9, DO 66.3% 6.61 mg/L, pH 8.64; (SDOE (2)): T 9.1°C, C 125, SC 179.5, DO 60.4% 5.94 mg/L, pH 8.57; (SDOE (3)): T 10.7°C, C 393.3, SC 541.6, DO 63.3% 6.00 mg/L, pH 8.11; (SDOE(4)): T 12.2°C, C 300.4, SC 397.0, DO72.9% 6.60mg/L, pH 8.18

Observer Key: (bkh) is Brian Hastings, (bt) is Ben Trustman, (jj) is Jack Jacquet

Stage: Water level recorded by ISCO,

Hydrograph: Describes stream stage as rising (R), falling (F), steady (S), baseflow (B), or backwater (BW)

Streamflow Source: measured by a hydrologist (M), obtained from an existing rating curve or gaging station [R], or estimated E

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - [0.050433063928 * field temp] + [0.00058561144042 * field temp^2]) * Field specific conductance

Turbidity values are reported from the sample using a desktop turbidimeter and do not reflect laboratory analysis and results

Station Observer Log: Fishermans Park II (D-16)

Site Conditions				Pipe or S	Streamflov	V	Water (Quality Obs	ervations						Remarks
Date/Time (observer time)	Observer	Stage	Hydrograph	Flow	Streamflow Source	Estimated Accuracy	Water Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	Hd	Turbidity	Samples collected?	
		(feet)	(R/F/S/B)	(cfs)	(M, R, E)	(e/g/f/p)	(oC)	(µmhos/cm)	(at 25 oC)	(%)	(mg/L)		(NTU)	(yes/no)	
8/22/2017 11:40	bt													no	Battery dead; water flowing in outfall est. 0.25 cfs
8/22/2017 13:46	bt	0.11	В											no	ISCO reading 0.24 ft/s but 0 cfs; iced and set for flow based sample at 6400 cf , >0.25 ft based on 0.25 inches of forecast rain from thunderstorms
8/23/2017 11:28	bt	0.09	В											no	No samples taken; water still flowing out of outfall; ISCO reading 0 cfs and -0.25 ft/s; capped bottles and emptied ice; turned off ISCO; extra battery in box
9/6/2017 14:47	bt	0.09	В											no	ISCO reading 0 cfs and -0.25 ft/s but there is visible flow est. 0.025-0.05cfs; set for flow based sample >0.13ft at 4408 cf based on 0.18 inches of rain forecast for thunderstorms; level on ISCO fluctuating while at site from 0.09 to 0.113ft.; not enough flow to measure water quality (probe could not be submerged)
9/7/2017 12:23	bt, jj	0.08	В											no	ISCO reading 0 cfs and 0.21 ft/s but there is visible flow of <0.05 cfs; no samples taken; capped bottles and cleared ice and water; shut off ISCO
11/15/2017 11:30	bt,jj	0.28	В											no	Small amount of visual flow-not enough to register on ISCO <0.01; currently cloudy with intermittent light rain; lced and set the ISCO for flow based sample at 26841 cf, >0.13ft with forecast of 1.0 inch of rain; time is one hour ahead (not reset for DLS)
11/16/2017 14:10	bt, jj	0.40	R											no	Low battery program halted; sample report said 7 bottles sampled; actually only 3 bottles sampled due to low battery; power completely shut off at 8:26; intermittent start and stop after bottle 2; changed battery; reset program to sample every 5964 cf based on remaining forecast of 0.2 inches of rain starting immediately; moved the three samples taken to 22-24 and capped; restarted program at 14:48; clock still one hour ahead; iced samples
11/17/2017 10:13	bt, bkh		F										(1)95.22, (4)112.1	yes	Calibrated DO meter; processed samples; power failure during 11/15 missed rising limb and peak samples; First Flush (D-16 (1)): T 2.6°C, C 116.3, SC 203.1, DO 92.2% 10.7 mg/L, pH 7.69; Falling Limb (D-16(4)): T2.9°C, C 70, SC 122, DO 77% 8.73mg/L, pH 7.53
1/18/2018 17:58	bt, jj														No flow in outfall; filled ISCO with bottles and iced; set for flow based sample >0.15 inches and 3200 cf flow; 0.1-0.2 inches of rain forecast
1/19/2018 9:38	bt													yes	Very little flow out of outfall and ISCO reading 0 cfs; 4 samples taken- short hydrograph but samples were representative of the 4 phases for composite samples; First Flush (D-16 (1)): T 5.6°C, C 365.7, SC 583.6, DO 84% 8.97 mg/L, pH 8.27; Rising Limb (D-16(2)): T 5.2°C, C 329.5, SC 529.5, DO 86% 9.23 mg/L, pH 8.11; Peak (D-16(3)): T 5.2°C, C 300.2, SC 482.6, DO 86% 9.22 mg/L, pH 8.10; Falling Limb (D-16(4)): T 5.4°C, C 274.3, SC 438.8, DO 67% 9.28 mg/L, pH 8.02; no E.coli sample due to holding time; no Turbidity sample because used each sample bottle for a composite

Observer Key: (bkh) is Brian Hastings, (bt) is Ben Trustman, (jj) is Jack Jacquet

Stage: Water level is recorded on ISCO,

 $\label{eq:hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)$

Streamflow Source: measured by a hydrologist (M), obtained from an existing rating curve or gaging station [R], or estimated E

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - $[0.050433063928*field temp] + [0.00058561144042*field temp^2])*Field specific conductance$

Station Observer Log: Oxbow Nature Park (C-24)

Site Conditions				Pipe or S	Streamflov	v	Water (Quality Obs	ervations						Remarks
Date/Time (observer time)	Observer	Stage	Hydrograph	Flow	Streamflow Source	Estimated Accuracy	Water Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	Hd	Turbidity	Samples collected?	
		(feet)	(R/F/S/B)	(cfs)	(M, R, E)	(e/g/f/p)	(oC)	(µmhos/cm)	(at 25 oC)	(%)	(mg/L)		(NTU)	(yes/no)	
8/22/2017 11:14	bt	0.19	В											no	Set ISCO for flow based sample at 1610cf, >0.55 ft (stage readings have shifted while at site up to 0.34) based on forecast of 0.25 inches of rain from slow moving thunderstorms; ISCO reading -1.53 ft/s and 0 cfs; visual shows flow at est. 0.05; spoke to NWS Reno said convective cells could produce 0.05-1.0 inches of rain in places
8/23/2017 10:20	bt	0.20	В											no	No samples taken; no evidence of rain at site-completely dry; ISCO reading -0.28 ft/s and 0 cfs; removed ice; recapped all bottles; turned off ISCO
9/6/2017 13:50	bt	0.19	В		R									no	Arrived at site to set up ISCO; ISCO reading -0.28ft/s but there was visual flow est 0.05 cfs; set Isco to sample at >0.23 ft, 986 cf based on forecast of 0.18 inches of precipitation
9/7/2017 9:43	bt,jj	0.16	В	0.08	R	g							91.11, 46.83, 66.72, 16.65	yes	7 samples taken during thunderstorm with est. 0.08 inches of rain; dual peak hydrograph; used first peak as First Flush sample and used second peak as rising limb, peak and falling limb; First Flush (C-24(1)):T 12.6°C, C 230.2, SC 306, DO 44.9% 4.0 mg/l pH 7.30; Rising Limb (C-24(2)):T 13.2°C, C 165.6, SC 212.9, DO 74% 6.37 mg/l, pH 7.30; Peak (C-24(3)):T 14.9°C, C 201, SC 248.1, DO 65% 5.53mg/l, pH 7.07; Falling Limb (C-24(4)): T16.9°C, C 169.3, SC 200, DO 75% 6.14 mg/l, pH 7.33; level at 0.117 ft. and reading 0 cfs 0.41ft/s with visible flow at 10:53 when leaving site; shut down ISCO and capped unused bottles
11/15/2017 11:00	bt,jj														Homeless camp next to sampler; woman appears to be leaving; battery dead; moving on and plan to return
11/15/2017 13:30	bt,jj	0.10	В												Light rain; iced and set ISCO for flow based sample at 8633cf >0.20ft for forecast of 1.25 inches of rain; not enough water flowing to measure water quality; reset clock for DLS; homeless tent still at site with no people present
11/16/2017 15:15	bt, jj	0.37	F	4.19	R	g							55.76, 19.03, 14.85, 25.09	yes	24 samples taken; many peaks in hydrograph as rain had many pulses of intensity; First Flush (C-24 (1)): T 5.1°C, C 67.4, SC 108.9, DO 92.4% 9.87mg/L, pH 8.17; Rising Limb (C-24(2)): T4.4°C, C 22.7, SC 37.4, DO 92.7% 10.10 mg/L, pH 7.86; Peak (C-24(3)): T5.1°C, C 21.1, SC 34.1, DO 80.9% 9.56 mg/L, pH 7.64; Falling Limb (C-24(4)): T 6.2°C, C 25.8, SC 40.2, DO 80.9% 8.41 mg/L, pH 7.42; Samples processed and iced at 16:10; ISCO readings dropped when leaving site; left ISCO running to capture the rest of the storm
12/20/2017 8:30	jj	0.07													Battery dead; hooked up fresh battery and downloaded ISCO; removed both batteries and turned ISCO off

Observer Key: (bt) is Ben Trustman, (jj) is jack Jacquet

Stage: Water level is recorded on ISCO,

Hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)

Streamflow Source: measured by a hydrologist (M), obtained from an existing rating curve or gaging station [R], or estimated E

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - $[0.050433063928*field temp] + [0.00058561144042*field temp^2])*$ Field specific conductance

Station Observer Log: Thomas Creek at South Meadows Pkwy (TC@SMP)

Site Conditions	Streamflow Water Quality Observations											Remarks						
Date/Time (observer time)	Observer	Stage (feet)	Oppus	(R/F/S/B)	ह्य Streamflow	Streamflow Source	(%)/6/J/G/Accuracy	High-water (tagh) Mark	(XX) HWM date?	Water © Temperature	Field Specific Conductance	Adjusted SS Specific Conductance	Dissolved Oxygen	Bissolved Oxygen	Hd	(A. Turbidity	Samples collected?	
7/31/2017 14:55	bt	0.07	(9	В	1.9	M	g			20.3	84	92	90		7.69		no	Water clear; near baseflow; some mud at staff plate- cleared away to get reading
8/22/2017 15:28	bt	-0.15		В														Currently raining; runoff in gutters; not going to measure flow due to lightning; staff dry and out of water; flow is low and not increasing yet
8/22/2017 16:00	bt	-0.15		В														Rain has subsided; no change in stage or turbidity of water; not sampling
9/20/2017 11:26	bt, jj	0.35		S	4.3	М	g			12.9	112	146	91	8.1	7.74	13.37	yes	Higher flow than previous visit; water slightly murky; vegetation is drying out around stream; ambient sample collected at 12:00
10/11/2017 14:32	bt	0.08		В	2.8	М	g			10.9	107	146	104	9.8	7.97		no	Water clear; baseflow; all vegetation is dry; no obstructions upstream; DO seems high
11/15/2017 16:36	bt, jj	1.52		S						8.7	73	106	92	9.1	7.94		no	Installed Solinst logger because In-Situ data was questionable from last download-started at 16:45; discovered a beaver dam about 75 ft. downstream of the gage-tried to remove some debris buildup and logs at 17:05; stage was 1.47 at 17:10 and 1.39 at 17:21-most likely will continue to drop
11/15/2017 23:46	bt,jj	1.35		R	6.0	М	р			6.1	68	107	94	9.8	7.64	59.20	yes	Stage has dropped since earlier visit when we removed debris from beaver dam; higher flow and noticeably turbid water with lots of plant debris; rain has persisted steadily for last 2+ hours; sample collected at 0:05
1/4/2018 13:14	bt	0.79		В	1.20	est.				3.7	68	114	98	11.1	7.37		no	Stage higher due to downstream beaver dam; lower stage upstream at prospective gage site; downloaded water level recorders; water clear
1/8/2018 14:44	bt,jj	0.87	4.05	S	0.75	М	g/f			3.8	74	123	111	12.4	7.66		no	New gage installed 200 ft. upstream of old gage to avoid beaver dam effects; first flow measurement at new site; water clear
2/6/2018 13:42	bt	1.08	4.32	S	1.87	M	g/f			4.8	65	105	106	11.6	7.95	4.86	yes	Water clear; ambient sample collected at 14:20; still high water backed up from beaver dam at old gage; flow primarily out of left side culvert under driveway bridge upstream
3/12/2018 14:45	bkh		4.42	S														Passing by; observed stage at new station before predicted storm to help samplers identify rising stage
3/13/2018 17:58	bt		4.56	S	3.70	M	g			7.1	72	110	110	11.2	8.03	9.69	yes	Slightly turbid water; stage up 0.14 since 3/12 visit; rain stopped ≈2.5 hours ago but projected to pick up again
4/20/2018 11:30	bkh		4.30	В	3.68	М	g	6.50	3/22 or 4/7	7.1	65	98	67	7.0	9.29		no	Water clear; trees blooming, leafing out; beaver still active downstream-not affecting this gage; old gage still backwatered; overbank flow based on high water marks; pool grade control intact; marmots living in bank upstream of gage; pH probe is malfunctioning

Observer Key: (bkh) is Brian Hastings, (bt) is Ben Trustman, (jj) is Jack Jacquet

Stage: Water level observed on staff plate,

Hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)

Streamflow Source: measured by a hydrologist (M), obtained from an existing rating curve or gaging station [R]

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - $[0.050433063928*field temp] + [0.00058561144042*field temp^2])*$ Field specific conductance

Station Observer Log: Whites Creek at Old Virginia HWY (WC@OVH)

Site Conditions				Streamflo	ow .				Water (Quality Obs	ervations				Remarks		
Date/Time (observer time)	Observer	Stage	Hydrograph	Streamflow	Streamflow Source	Estimated Accuracy	High-water Mark	HWM date?	Water Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	H _d	Turbidity	Samples collected?	
		(meters)	(R/F/S/B)	(cfs)	(M, R)	(e/g/f/p)	(feet)	(M/D/YY)	(oC)	(µmhos/cm)	(at 25 oC)	(%)	(mg/L)		(NTU)	(yes/no)	
8/22/2017 15:05	bt	2.64	R	26.8	R	g			15.4	61	75	95	9.3	7.34	41.1	yes	Thunderstorm activity in area starting at 14:30-strong thunderstorm activity as team approached site and continued throughout sample acquisition; stage rising during sample collection; gutters running full; YSI calibrated for DO at site; sample collected at 15:15
9/20/2017 11:08	bt, jj	1.22	R	8.2	R	g			9.1	57	83	94	9.2	7.77	11.6	yes	Ambient sample collected at 11:12; big construction site across the street from measurement site
11/15/2017 23:20	bt, jj								6.2	39	60	99	10.4	7.65	111	yes	Raining steady and hard for last hour; recalibrated DO prior to measurement; sample collected at 23:26; no data available from TROA
2/6/2018 12:35	bt	0.64	R	3.0	R	g			3.1	49	84	104	12.0	7.82	2	yes	Ambient sample collected at 12:50; water clear; clean channel bed; some garbage on banks
2/7/2018 10:30	bt	0.64	R	3.0	R	g										yes	Ambient E.coli sample collected at 10:32

Observer Key: (bt) is Ben Trustman, (jj) is Jack Jacquet

Stage: Water level observed on staff plate, (staff plate is metric at this location) or recorded by TMWA

Hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)

 $Streamflow \ Source: \ measured \ by \ a \ hydrologist \ (M), \ obtained \ from \ an \ existing \ rating \ curve \ or \ gaging \ station \ [R]$

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - [0.050433063928 * field temp] + [0.00058561144042 * field temp^2]) * Field specific conductance

Station Observer Log: Alum Creek at Truckee River (AC@TR)

Site Conditions				Streamflo	ow				Water G	Quality Obs	servations						Remarks
Date/Time (observer time)	Observer	Stage	Hydrograph	Streamflow	Streamflow Source	Estimated Accuracy	High-water Mark	HWM date?	Water Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	Hd	Turbidity	Samples collected?	
		(feet)	(R/F/S/B)	(cfs)	(M, R)	(e/g/f/p)	(feet)	(M/D/YY)	(oC)	(µmhos/cm)	(at 25 oC)	(%)	(mg/L)		(NTU)	(yes/no)	
6/5/2017 16:03	bt	0.66	S	2.56	M	g/e			19.4	600	672	82	7.5	9.84		no	Lots of gravel at the upstream side of the gage pool; water is milky; rocks at top of gage pool creating a small riffle; turbulence not effecting gage reading; stream channel still full 35 ft. upstream but returns to incised channel as it approaches gage pool
6/22/2017 11:30	bt, bkh	0.57	S	1.85	М	g/e			22.1	374	389	94	6.9	7.86		no	Significant erosion through gage reach; pool and gage is now a riffle; knickpoint has migrated upstream; consider moving gage for FY2018; Downstream knickpoint moving upstream past cobbles could make it to gage with high flow or flood conditions in next year
7/31/2017 15:59	bt	0.50	В	1.46	М	g			25.5	416	420	94	7.7	8.11		no	Water murky; lots of fines just upstream of gaging pool where measurement was taken; gaging pool still a riffle-moved some larger cobbles
9/20/2017 8:48	bt, jj	0.55	В	1.86	M	g			12.9	317	413	104	9.2	7.70	26.53	yes	Sample collected at 8:56 for Summer ambient sampling; DO reading high-calibrated in office and again in the field-restoring factory calibration and will recalibrate at next site; baseflow conditions; gage pool is still a riffle; all flood controls upstream have been removed
10/11/2017 16:16	bt	0.29	В	0.34	М	g			10.9	369	505	104	9.8	8.03	_	no	Water clear; moved several large boulders to create a control pool at gage where riffle had formed; no change in stage at gage; lots of fines just upstream of gage pool where measurements taken; DO seems to be reading high
11/15/2017 20:54	bt,jj	0.47	R	0.95	М	f			7.6	395	594	113	11.4	7.51	15.65	yes	Rain began at 18:30; steady rain for last couple hours increasing through the night; lots of leaves and debris in channel moving downstream; sample collected at 21:20
12/15/2017 12:45	bkh,jj	0.39	В	0.22	М	g			0.8	570	1062	92	11.2	7.82		no	Gaging pool could be easily scoured-gravels; likely stage shifting during storm flows; channel banks continue to erode upstream of gage
1/4/2018 11:06	bt	0.41	В	0.18	M	g			3.8	584	982	97	10.8	7.14		no	Lots of sediment in bottom of well; removed well at 11:45-cleaned out; removed some sediment from behind staff plate where well sits; replaced well and retightened-stage 0.42; water level recorders back in well at 12:27; installed backup Solinst water level recorder-launched at 13:00
2/7/2018 9:35	bt	0.41	В	0.15	М	g/f			1.7	534	963	99	11.8	8.18	2.40	yes	Water clear; baseflow; ambient sample collected at 10:10; construction on left bank down stream of gage finished
4/7/2018 7:32	bt	1.13	R	9.77	M	f			9.5	217	309	87	8.4	8.01	254.30	yes	Water turbid and brown; stage rising during measurement; raining hard at arrival but rain subsided in 20 minutes; water is high but within channel-no overbank ponding in grassy area; lots of bed movement under and around feet
4/20/2018 12:35	bkh	0.43	В	0.65	М	g	3.80	3/22 or 4/7	12.0	477	634	87	8.0	9.00		no	Water is slightly cloudy; downstream erosion control was addressed using rip- rap confining channel at high flows; banks near gage upstream severely eroded; channel at gage cross section eroded; pH probe is malfunctioning

Observer Key: (bkh) is Brian Hastings, (bt) is Ben Trustman, (jj) is Jack Jacquet

Stage: Water level observed on staff plate,

 $\label{eq:hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)$

 $Streamflow \ Source: measured \ by \ a \ hydrologist \ (M), \ obtained \ from \ an \ existing \ rating \ curve \ or \ gaging \ station \ [R]$

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - [0.050433063928 * field temp] + [0.00058561144042 * field temp^2]) * Field specific conductance

Station Observer Log: Chalk Creek at Chalk Bluff (CC@CB)

Site Conditions	ditions Streamflow									uality Obser	vations					Remarks	
Date/Time (observer time)	Observer	Stage	Hydrograph	Streamflow	Streamflow Source	Estimated Accuracy	High-water Mark	HWM date?	Water Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	Ha	Turbidity	Samples collected?	
		(feet)	(R/F/S/B)	(cfs)	(M, E)	(e/g/f/p)	(feet)	(M/D/YY)	(oC)	(μmhos/cm)	(at 25 oC)	(%)	(mg/L)		(NTU)	(yes/no)	
7/31/2017 16:45	bt	3.52	В	0.60	M	g			22.5	2535	2663	79	6.9	8.25		no	Water clear; grass very tall and thick at crossover sight that you cannot see the upstream channel; staff plate in low water with lots of sediment in pool; logger was not stuck in well
9/20/2017 10:10	bt, jj	3.62	В	0.78	М	g			12.5	2453	3223	89	7.8	8.22	6.66	yes	Grass green and overgrown in creek; willows green; removed vegetation in path so stream is more accessible; baseflows are higher than previous years; ambient sample collected at 10:15
10/11/2017 17:24	bt	3.63	В						11.6	2542	3414	96	8.7	8.15		no	Water clear; grasses next to stream are green but all other veg in area is dry; downloaded logger and baro
11/15/2017 21:49	bt,jj	4.44	R	16.01	М	р			8.1	719	1070	124	12.3	7.84	106.9	yes	Lots of foam in channel and at gage; rain increasing during visit; foam making flow measurement very difficult; stage rising rapidly; sample collected at 21:55
1/4/2018 16:37	bt	3.63	В	0.70	est.				8.2	2315	3410	86	8.5	8.16		no	Water level recorder was in some sediment when removed; evidence of overbank flow in vegetation from November storm; installed back up water level recorder (Solinst-launched at 17:30)-loggers back in well at 17:11; cleared out sediment around bottom of well at 17:15-stage remained at 3.63
2/7/2018 8:40	bt	3.59	В	0.55	М	f			3.6	1827	3084	103	11.6	8.03	5.1	yes	Water clear; ambient sample collected at 9:06; lots of algae on the rocks downstream of gage; algae build up on gage at water level
3/13/2018 16:45	bt,jj	3.72	F	1.42	М	f			12.0	2290	3043	101	9.0	8.24	40.0	yes	Turbid water; no foam; stopped raining 1.5 hrs prior; short burst of rain ≈0.1 inches; projected to continue raining; sample collected at 16:52
4/20/2018 13:45	bkh	3.58	S	0.85	М	g			15.3	2473	3036	113	9.6			no	Final FY2018 site visit; download; flow measurement; log against staff plate; removed; sunny warming period no rain in forecast.

Observer Key: (bkh) is Brian Hastings, (bt) is Ben Trustman, (jj) is Jack Jacquet

Stage: Water level observed on staff plate,

Hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)

Streamflow Source: measured by a hydrologist (M), obtained from an existing rating curve or weir equation [E]; V-notch weir equation used: Q = ; Rectangular weir equation = Q = 3.33LH^1.5

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - [0.050433063928 * field temp] + [0.00058561144042 * field temp^2]) * Field specific conductance

Station Observer Log: Steamboat Creek at the Narrows (SBC@NAR)

Site Conditions Streamfl						reamflow Water Quality Observations												Remarks
	Date/Time (observer time)	Observer	Stage	Hydrograph	Streamflow	Streamflow Source	Estimated Accuracy	High-water Mark	HWM date?	Water Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	Hd	Turbidity	Samples collected?	
			(feet)	(R/F/S/B)	(cfs)	(M, R)	(e/g/f/p)	(feet)	(M/D/YY)	(oC)	(µmhos/cm)	(at 25 oC)	(%)	(mg/L)		(NTU)	(yes/no)	
ę	9/20/2017 12:23	bt, jj	-0.16	В	29.8	USGS	р			16.9	534	632	96	8.0	8.19	19	yes	Construction still continuing around the channel on both sides; connector bridge now built; ambient sample collected at 12:33
	11/16/2017 0:24	bt,jj	0.34	R	61.4	USGS	р			8.4	504	737	94	9.2	8.28	252	yes	Sample collected at 0:36; rain steady for last 1.5-2 hours
	2/6/2018 11:46	bt	0.19	В	40.9	USGS	р			6.9	362	553	105	11.0	8.14	40	yes	Ambient sampling; construction still continuing; water brown
	4/7/2018 9:15	bt	1.70	R	114.0	USGS	р			11.6	318	428	103	9.5	8.13	119	yes	Water turbid and brown; rising stage; rain stopped at 7:45; sample collected at 9:25; construction still continuing at site

Observer Key: (bt) is Ben Trustman, (jj) is Jack Jacquet

Stage: Water level observed on staff plate,

Hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)

Streamflow Source: measured by a hydrologist (M), obtained from an existing rating curve or gaging station [R]

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - [0.050433063928 * field temp] + [0.00058561144042 * field temp^2]) * Field specific conductance

Station Observer Log: Steamboat Creek at Rhodes Road (SBC@RR)

Site Conditions Streamflow								Water (Quality Obs	ervations						Remarks		
-	Date/Time (observer time)	Observer	Stage	Hydrograph	Streamflow	Streamflow Source	Estimated Accuracy	High-water Mark	HWM date?	Water Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	Hd	Turbidity	Samples collected?	
			(feet)	(R/F/S/B)	(cfs)	(M, R)	(e/g/f/p)	(feet)	(M/D/YY)	(oC)	(µmhos/cm)	(at 25 oC)	(%)	(mg/L)		(NTU)	(yes/no)	
-	9/20/2017 10:41	bt, jj	1.41	В	17.7	USGS	р			11.6	195	262	93	8.5	7.94	17	yes	Ambient sample collected at 10:55, vegetation is green with some leaves starting to change color
	11/15/2017 22:59	bt, jj	1.48	R	15.2	USGS	р			7.0	203	310	114	11.6	7.94	73	yes	Rising limb of the hydrograph as rain has increased over the last hour; sample collected at 23:05
	2/6/2018 13:09	bt	1.71	R	35.3	USGS	р			7.1	212	323	107	11.1	8.28	38	yes	Ambient sample collected at 13:22; water brown and turbid
_	4/7/2018 8:39	bt	2.13	R	140.0	USGS	р			9.9	199	280	98	9.4	8.14	110	yes	Water very turbid; sample collected at 8:50; rain stopped at 7:45; water is high but contained in the channel

Observer Key: (bt) is Ben Trustman, (jj) is Jack Jacquet

Stage: Water level observed on staff plate,

Hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)

Streamflow Source: measured by a hydrologist (M), obtained from an existing rating curve or gaging station [R]

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - [0.050433063928 * field temp] + [0.00058561144042 * field temp^2]) * Field specific conductance

Station Observer Log: Steamboat Creek at Clean Water Way (SBC@CWW)

Site Conditions				Streamfle	ow				Water 0	Quality Obs	ervations						Remarks
Date/Time (observer time)	Observer	Stage	Hydrograph	Streamflow	Streamflow Source	Estimated Accuracy	High-water Mark	HWM date?	Water Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	Hd	Turbidity	Samples collected?	
		(feet)	(R/F/S/B)	(cfs)	(M, R)	(e/g/f/p)	(feet)	(M/D/YY)	(oC)	(µmhos/cm)	(at 25 oC)	(%)	(mg/L)		(NTU)	(yes/no)	
9/19/2017 11:15	bt,jj	4.91	В	66.8	USGS	р			15.3	492	601	105	8.9	8.82		yes	Set up ISCO for ambient sampling; checked intake line and sample calibration; set to sample 400ml every hour; DO high and questionable-recalibrate instrument
9/19/2017 15:59	bt	4.97	В	71	USGS	р										no	re-checked ISCO to make sure it was working properly-was on sample 6
9/20/2017 16:41	bt, jj	4.96	В	70.3	USGS	р				-					(1)19.93, (2) 24.32, (3) 29.67, (4) 28.90	yes	Process 24 samples for ambient sampling; SBC@CWW (1) T 6.8°C, C 413.1, SC 630.5, DO 77% 7.9 mg/l, pH 8.35, SBC@CWW (2) T 7.1°C, C 383.2, SC 581.3, DO 74.8% 7.62 mg/l, pH 8.41, SBC@CWW (3) T 8.0°C, C 387.7, SC 574.7, DO 71.2% 7.10 mg/l, pH 8.40, SBC@CWW (4) T 8.8°C C 409.4, SC 592.1, DO 67.8% 6.64 mg/l, pH 8.34
11/15/2017 14:30	bt,jj	4.69	В	51.8	USGS	р			8.4	466.5	682.6	120	11.9	8.26		no	DO% seems high; WQ meter was working normal at last two sites; set ISCO to sample starting every 45 minutes starting at 21:00
11/16/2017 7:55	bkh	5.85	R	146	USGS	р										yes	Moderate rain overnight; currently light rain, flow is turbid and rising. ISCO has already sampled 15 times. Initial rise in stage occurred around 2:00; preserved samples #8-15, moved to end of carousel, dumped samples #1-7 (baseflow) and replaced with clean bottles, added ice; programed to sample every 90 mins beginning at 8:30.
11/16/2017 20:30	jj	8.23	R	467	USGS	р										yes	Reprogramed ISCO to sample every 2 hours starting at 22:00; 7 bottles unfilled; rest of bottles capped; added ice; water flowing through high flow bypass
11/17/2017 11:10	bt,bkh	7.1	F	296	USGS	р			6.8		510	80	8.4	7.93	31.4, 133.3, 524.0, 294.8	yes	Sunny and flows receding; samples processed; First Flush (SBC@CWW (1)): T 2.4°C, C 381, SC 671, DO 86% 10. mg/L dropping, pH 8.05; Rising Limb (SBC@CWW (2)): T 2.6°C. C 280, SC 490, DO 80% 9.35 mg/L, pH 8.02; Peak (SBC@CWW (3)): T 3.3°C, C 306, SC 522, DO 77% 8.75 mg/L, pH 8.05; Falling Limb (SBC @CWW (4)): T 4.0°C, C 296, SC 494, DO 73% 8.21 mg/L, pH 8.03
1/4/2018 13:45	bt	7.09	В	291	USGS	р										no	Meeting with NDOT regarding telemetry and water quality instrumentation
1/19/2018 11:00	bt															no	Removed hose clamp from intake pipe that was attached to USGS crest gage at the request of Marsha G from USGS
2/6/2018 9:55	bt	5.02	В	56.5	USGS	р			6	371.6	583.9	95.8	10.3	8.17		no	Set ISCO to sample 400ml every hour starting at 12:00 for ambient sampling; water brown with some debris caught on bridge pillars
2/7/2018 14:40	bt	5.02	В	56.5	USGS	р			8.3	400.5	588.1	113	11.4	8.29	34.57, 39.54, 38.71, 38.94	yes	Process 24 samples for ambient sampling; SBC@CWW (1) T 5.2°C, C 354.2, SC 569.5, DO 84% 9.21 mg/l, pH 8.38, SBC@CWW (2) T 5.4°C, C 352.7, SC 564, DO 80% 8.77 mg/l, pH 8.34, SBC@CWW (3) T 6.2°C, C 361.1, SC 560.9, DO 80% 8.54 mg/l, pH 8.30, SBC@CWW (4) T 7.1°C C 379, SC 575.5, DO 84% 8.78 mg/l, pH 8.28
4/6/2018 12:30	bt	bkw															Site visit to remove conduit for previous sampling site under bridge; USGS reporting backwatering but visual evidence suggests opposite; overflow channel is not active
4/7/2018 9:48	bt	bkw							12.2	330.1	439.8	89.4	8.2	8.19	244.7	yes	Grab sample taken 75 feet downstream of Yori Drain monitoring site; collected grab sample due to USGS reporting backwater and thus could not composite bottles in autosampler based on hydrograph

Observer Key: (bkh) is Brian Hastings, (bt) is Ben Trustman, (jj) is Jack Jacquet

Stage: Water level observed on staff plate,

Hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)

Streamflow Source: measured by a hydrologist (M), obtained from an existing rating curve or gaging station [R]

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - [0.050433063928 * field temp] + [0.00058561144042 * field temp^2]) * Field specific conductance

Turbidity values are reported from the sample using a desktop turbidimeter and do not reflect laboratory analysis and results

Station Observer Log: North Truckee Drain at Big Fish Dr (NTD@BFD)

Site Conditions				Streamfle	ow				Water (Quality Obs	ervations						Remarks
Date/Time (observer time)	Observer	Stage	Hydrograph	Streamflow	Streamflow Source	Estimated Accuracy	High-water Mark	HWM date?	Water Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	Цd	Turbidity	Samples collected?	
		(feet)	(R/F/S/B)	(cfs)	(M, R)	(e/g/f/p)	(feet)	(M/D/YY)	(oC)	(µmhos/cm)	(at 25 oC)	(%)	(mg/L)		(NTU)	(yes/no)	
9/20/2017 13:17	bt, jj	4.05	В	4.90	USGS	р			15.3	874	1074	61	5.1	7.90	17.87		Dirty water with some visible trash including a stroller; ambient water sample collected at 13:25
10/11/2017 11:40	bt	4.01	В	1.91	USGS	р											Installed ISCO 3700 into new job box; calibrated the ISCO estimated 25 feet of hose and 10 feet of head using fill volume of 750ml filled bottle 7/10 full; tightened and reset delivery arm on ISCO; ISCO has 24 capped bottles and battery at 12.5V in box
11/15/2017 12:50	bt,jj	3.95	S	1.53	USGS	р			7.6	1074	1607	90	9.2	7.98	·	no	Called NWS to check on timing of forecasted rain; set ISCO time based sampling to start at 20:00 and sample every 30 minutes
11/16/2017 6:55	bkh	4.50	R	5.00	USGS	р										yes	Moderate rain, water turbid and rising; ISCO already sampled 22 times; actual rise in stage occurred at 3:00; preserved samples #15-22, moved to back of carousel; replaced #1-16 with clean bottles, reprogrammed to sample every 45 minutes beginning at 7:45, added ice. USGS stage: 4.73 ft at 7:25.
11/16/2017 19:50	jj	5.79	F	24.20	USGS	р											Samples capped and ISCO stopped at 20:00; added ice to ISCO until samples composited
11/17/2017 14:45	bt, bkh	4.33	F	3.62	USGS	р			8.5	1000	1472	69	6.9	8.02	28.81, 60.27, 51.99, 31.69	yes	First Flush (NTD@BFD(1)): T 4.1°C, C 773, SC 1285, DO 80% 8.96 mg/L, pH 8.19; Rising Limb (NTD@BFD (2)): T 4.3°C, C 318, SC 526, DO 84% 9.33 mg/L, pH 8.07; Peak (NTD@BFD (3)): T 4.8°C, C 154, SC 250, DO 82% 9.10 mg/L, pH 8.03; Falling Limb (NTD@BFD(4)): T 4.7°C, C 154, SC 252, DO 78% 8.63 mg/L, pH 7.92
2/6/2018 9:27	bt	3.94	В	1.74	USGS	р			5.1	1212	1956	105	11.5	8.15	;	no	Set ISCO to sample 400ml every hour starting at 12:00 for ambient samples; water turbid and brown; some algae on surface
2/7/2018 12:00	bt	3.94	В	1.74	USGS	р			5.9	1230	1937	98	10.5	8.68	30.79,1 2.24,10 .44,12. 19	yes	Ambient samples collected every hour for 24 hours (NTD@BFD(1)): T 4.2°C, C 1164, SC 1905, DO 93% 10.29 mg/L , pH 8.50; (NTD@BFD (2)): T 6.0°C, C 1211, SC 1899, DO 96% 10.26 mg/L, pH 8.54; (NTD@BFD (3)): T 7.2°C, C 1262, SC 1907, DO 93% 9.56 mg/L, pH 8.56; (NTD@BFD(4)): T 8.9°C, C 1326, SC 1911, DO 89% 10.51 mg/L, pH 8.68
4/5/2018 19:45	bt	3.67	В	3.27	USGS	р			13.6	1249	1597			8.14		no	Set up ISCO for sampling every 30 minutes starting 4/6/18 at 13:00; did not calibrate DO due to time constraints
4/6/2018 11:24	bt, jj	3.77	R	3.97	USGS	р			11.0	1079	1474	63	5.9	8.30)	no	Reset ISCO to start sampling at 11:30 as flow and stage are rising; rain has increased and is steady
4/6/2018 15:50	bt, jj	4.05	R	6.15	USGS	р			9.6	857	1216	75	7.2	8.16	5 51.51	yes	Processed first 9 sample bottles as first flush(Water Quality from the composite); rain has subsided but is forecast to increase again overnight with light to moderate rain until then; replaced bottles in sampler and reset to sample every 45 minutes starting at 17:00
4/7/2018 10:43	bt	4.34	R	9.12	USGS	р									65.58, 61.51, 54.57	yes	Processed 17 sample bottles (bottles 18-24 were from a second storm pulse and new hydrograph); composited into 3 samples as first flush was processed the prior day; (NTD@BFD (2)): T 8.6°C, C 550, SC 797, DO 57.1% 5.58 mg/L, pH 8.24; (NTD@BFD (3)): T 9.5°C, C 548, SC 778, DO 57.6% 5.52 mg/L, pH 8.35; (NTD@BFD(4)): T 11.2°C, C 564, SC 766, DO 55.8% 5.18 mg/L, pH 8.68

Observer Key: (bkh) is Brian Hastings, (bt) is Ben Trustman, (jj) is Jack jacquet

Stage: Water level observed on staff plate,

Hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)

Streamflow Source: measured by a hydrologist (M), obtained from an existing rating curve or gaging station [R]

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - [0.050433063928 * field temp] + [0.00058561144042 * field temp^2]) * Field specific conductance

Station Observer Log: North Truckee Drain at Orr Ditch (NTD@ORD); USGS 10348245

Site Conditions					Streamfl	ow				Water (Quality Obs	ervations						Remarks
Date/Time (observer time)	Observer	Stage	Hydrograph	Rainall	Streamflow	Streamflow Source	Estimated Accuracy	High-water Mark	HWM date?	Water Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	Hd	Turbidity	Samples collected?	
		(feet)	(R/F/S/B)	(in.)	(cfs)	(M, R)	(e/g/f/p)	(feet)	(M/D/YY)	(oC)	(µmhos/cm)	(at 25 oC)	(%)	(mg/L)		(NTU)	(yes/no)	
9/20/2017 13:51	bt, jj	1.74	В		3.2	USGS	р			16.9	976	1153	96	7.8	8.02	7	yes	Water clear; visible trash and algal growth in the stream; ambient water sample collected at 14:00
11/16/2017 0:58	bt, jj	1.81	R		4.4	USGS	р			9.6	934	1323	70	6.7	7.95	36	yes	Streamflow rising; sample collected at 1:10; water slightly turbid
2/7/2018 10:57	bt	1.54	R		0.8	USGS	р			5.6	1326	2109	153	16.6	8.46	25	yes	Ambient sample collected at 11:10; duplicate sample from this site labeled NTD@NEP; a brown/green film is on the top surface of stream upstream of gage where stream widens; film is held by cattails growing in channel; water murky and brown
4/6/2018 12:00	bt, ji	1.78	R		3.9	USGS	р			10.9	1246	1713	95	8.9	8.46	56	ves	Water turbid; hydrograph is rising increasing 2+ cfs in last hour

Observer Key: (bt) is Ben Trustman, (jj) is Jack Jacquet

Stage: Water level observed on staff plate,

Hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)

Streamflow Source: measured by a hydrologist (M), obtained from an existing rating curve or gaging station [R]

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - [0.050433063928 * field temp] + [0.00058561144042 * field temp^2]) * Field specific conductance

Turbidity values are reported from the sample using a desktop turbidimeter and do not reflect laboratory analysis and results

Station Observer Log: Boynton Slough at Steamboat Creek (BS@SBC)

Site Conditions					Streamflo	w				Water (Quality Obs	ervations						Remarks
Date/Time (observer time)	Observer	Stage	Stage	Hydrograph	Streamflow	Streamflow Source	Estimated Accuracy	High-water Mark	HWM date?	Water Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	Ha	Turbidity	Samples collected?	
		(feet)	(feet)	(R/F/S/B)	(cfs)	(M, R)	(e/g/f/p)	(feet)	(M/D/YY)	(oC)	(µmhos/cm)	(at 25 oC)	(%)	(mg/L)		(NTU)	(yes/no)	
8/7/2017 10:30	bt	4.94		S							217	317	74	8.4	7.40		no	Installed temporary staff plate at old golf course bridge; fence at old golf course clubhouse open for Granite vehicles; WQ taken at office with sample from cooler; water brown and low velocity; construction barriers still up after the bridge
8/22/2017 16:20	bt	4.59		R						23.7	398	409	84	7.0	8.01	24	yes	Rain increased while at site; sample collected at 16:35; construction diversion has been removed downstream of bridge; several thunderstorm cells have released precipitation in the surrounding watershed over the last hour; raining steadily while at site and staff gage increased to 4.60; Water quality from sample
8/23/2017 11:48	bt	4.72		U						21.2	245	262	24	2.1	7.40		no	Construction on wetland just upstream of bridge site; construction at culvert below; asked civil engineer at site who said temporary culverts being removed; calibrated DO at site
9/20/2017 15:16	bt, jj	3.83		В	19.52	M	g/e			15.6	342	418	82	6.9	8.36	15	yes	Water level down about 1 foot since last visit; construction on wetland upstream continuing; no construction controls in stream; water slightly turbid; was able to measure streamflow 20 feet downstream of walking bridge; wadable up to waist; ambient sample collected at 16:05
11/15/2017 16:08	bt, jj	3.70		В						10.0	380	532	113	10.8	8.24		no	DO still reading high;
11/16/2017 11:18	bt,jj	5.22		R	269.91	М	f/p			8.0	95	142	94	9.4	7.84	- 58	yes	Stage was 3.7 yesterday at 16:00; water turbid with lots of debris floating downstream; intermittant rain while at site; rained overnight with up to 1.0 inches in region; flow measured from bridge with extended pole and Marsh McBurney; sample collected at 12:03; stage rising during site visit; second flow measurement measured 268.55 cfs
12/15/2017 10:45	bkh,jj	3.90		В	13.13	М	е			3.9	300	504	89	10.0	8.02	<u></u>	no	Non-storm winter baseflow measurement; no rain in last three weeks; water is slightly murky-cannot see bottom at 2 foot depth
1/4/2018 14:30	bt																no	Meeting with NDOT regarding installation of auto-sampler and water quality measurements
1/8/2018 12:00	bt,jj	3.96	4.10 (new)	S						7.1	347	526	86	8.8	7.43		no	Installed new staff plate on second pillar on Southeast connector bridge
1/8/2018 15:47	bt, jj	3.97	4.10	S	13.00	M	f			7.2	344	521	88	9.0	7.67	·	no	Water murky; 0.3 of rain in last two days; debris from higher flows on left bank under golf cart bridge; debris racked up on right side pillar on southeast connector bridge
2/7/2018 13:15	bt	3.90	4.03	В						9.0	347	500	98	9.8	8.20	11.41	yes	Ambient sample collected at 13:24; low flow; some debris in water

Observer Key: (bkh) is Brian Hastings, (bt) is Ben Trustman, (jj) is Jack Jacquet

Stage: Water level observed on staff plate,

Hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)

Streamflow Source: measured by a hydrologist (M), obtained from an existing rating curve or gaging station [R]

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - [0.050433063928 * field temp] + [0.00058561144042 * field temp^2]) * Field specific conductance

Turbidity values are reported from the sample using a desktop turbidimeter and do not reflect laboratory analysis and results

Station Observer Log: Yori Drain at Steamboat Creek (YD@SBC), FY2018

Site Conditions				Streamflo)W				Water (Quality Obs	ervations						Remarks
Date/Time (observer time)	Observer	ISCO depth	Hydrograph	(sta)	Streamflow Source	(e/s/6) Estimated Accuracy	High-water Mark	(XX/Q/W)	Water S Temperature	Field Specific Conductance	Adjusted Specific Conductance	Dissolved Oxygen	Dissolved Oxygen	Hd	(O13)	Samples collected?	
9/20/2017 14:36	bt, jj		В	8.00	M	f			15.5	422	516	95	8.1	9.27	7 39.55	yes	Measured flow at culvert; 6 foot round pipe, depth 2.30 ft velocity 0.81 ft/s; DO was reading 122% in stream but 94.7 in sample bucket
10/11/2017 12:50	bt	0.37	В	4.2	R	f			13.6	491	628	n/a	15.1	9.27	'		Installed ISCO 5712 in new job box; measured and set depth at 0.37 ft; Measured velocity with MMB reading 5.74 ft/s compared to ISCO measuring 5.84 ft/s; Set ISCO for 19 feet of tubing and automatic head; tested sample at 900ml and only 2/3 full bottle; reset to 1000ml and filled 7/10 of bottle; DO reading high and recalibrated but still read high
11/15/2017 15:17	bt, jj	0.48	В	6.6	R	g			8.5	472	688	140	13.9	8.86	S	no	Flow check 6 ft culvert depth 0.5 ft velocity 6.44 ft/s; ISCO reading was 0.48ft and 6.21ft/s; set ISCO to sample every 30 minutes at >0.52ft; DO is measuring high-DO has consistently measured high at this location-second measurement 30 ft upstream is the same
11/16/2017 8:40	bkh	0.47	R	6.7	R	g										yes	Moderate rain; no samples collected by ISCO yet: Airport reporting only 0.3 inches of rain; but 0.15" recorded in last hour. Water is turbid. Collected sample with ISCO (#1) and moved bottle to #24 in carousel; reprogrammed for 30 minute samples beginning 8:50. SBC flow level is <1.0 foot below outfall (wse), possible that this site backwaters when flow in SBC is > 300 cfs.
11/16/2017 12:41	bt, jj	1.17	R	19.6	R	g			9.6	135	192	83	8.0	7.61		yes	8 bottles sampled; checked ISCO; measured water quality
11/17/2017 13:05	bt, bkh	0.55	F	8.5	R	f			8.4	468	685	93	7.2	8.21	22.54	yes	Steamboat Creek level slightly below outfall; high water mark suggests backwatering; program kept sampling after 24 bottles recontaminating samples; sample 1 was capped and used as first flush sample; dumped all other samples; collected grab samples for falling limb; YD@SBC (1): T 9.2°C, C 196.0, SC 280.3, DO 72.5% 7.16 mg/L, pH 8.21; WQ for falling limb indicated in obs log (left)
1/4/2018 15:01	bt	0.41	В	3.8	R	g										no	Meeting with NDOT regarding installation for BS@SBC and SBC@CWW; showing the JobBox install
2/6/2018 11:00	bt	0.36	В	3.9	R	g			8.4	436	638	132	13.4	8.58	3	no	Set ISCO to sample 500 mL every hour starting at 12:00 for ambient sampling
2/7/2018 13:50	bt	0.35	В	3.9	R	g			10.0	452	633	144	14.1	8.65	20.30, 20.66, 18.73, 23.21	yes	Ambient samples collected every hour for 24 hours (YD@SBC(1)): T 5.8°C, C 410.4, SC 648.4, DO 99% 10.72 mg/L , pH 8.62; (YD@SBC (2)): T 7.5°C, C 424.6, SC 635.4, DO 96% 9.93 mg/L, pH 8.58; (YD@SBC (3)): T 8.7°C, C 439.2, SC 635.4, DO 91% 9.10mg/L, pH 8.54; (YD@SBC(4)): T 10.4°C, C 458.6, SC 636.6, DO 97% 9.42 mg/L, pH 8.53
3/6/2018 12:00	bkh	0.35	В	3.9	R	g										no	Equipment inspection; download; sunny, 45°F, some snow on ground; HWM suggests recent rain/snow did not backwater instrument; instruments are clear of debris and recording steady stage, velocity and flow.
4/5/2018 19:21	bt		В						14.3	453	570			8.29)	no	Steamboat Creek at high stage and ≈6 inches or less below the culvert outlet- anticipation of backwatering; did not calibrate DO due to time constraints
4/7/2018 9:48	bt		BKW						13.5	468	600	80	7.1	8.12	2 54.9	yes	Culvert is backwatered with Steamboat Creek ≈5-6 inches above bottom of culvert; grab sample collected 25 feet upstream from road
4/20/2018 10:30	bkh	0.40	В	5.4					10.3	408	567	108	10.5			no	Dry period; algae growing in culvert and on instruments; removed with brush; measured flow manually for calibration; ISCO reads 4.47 cfs; wetland upstream is full; current flow conditions are from upstream sources and wetland treated flows; HWMs in SBC suggest backwatering 2-3 deep on 3/22/18; this flow may be common based on water line and algae growth lines. Replace desiccant soon.

Observer Key: (bkh) is Brian Hastings, (bt) is Ben Trustman, (jj) is Jack Jacquet

Stage: Water level observed on staff plate,

Hydrograph: Describes stream stage as rising (R), falling (F), steady (S), or baseflow (B)

Streamflow Source: measured by a hydrologist (M), obtained from an existing rating curve or gaging station [R]

Specific conductance: Measured in micromhos/cm in field; then adjusted to 25degC by equation (1.8813774452 - [0.050433063928 * field temp] + [0.00058561144042 * field temp^2]) * Field specific conductance

Turbidity values are reported from the sample using a desktop turbidimeter and do not reflect laboratory analysis and results

APPENDIX B

Equipment Calibration Logs

	CALIBRATION SHEET	
DATE/TIME	4/1/2018	
NAME	Ben Trustman	
SERIAL NUMBER	1692	
	Buffer Standard Used	Notes Pass?
SPECIFIC CONDUCTANCE (μs/cm)	100 (μs/cm) Accep ⁻	table cell const. 4.0-6.0
	500 (μs/cm) 506 500 4.94 Accep	table cell const. 4.0-6.0
	1000 (μs/cm) 948 1000 5.21 Accept	table cell const. 4.0-6.0
	circle one mV Value Slope	
oH Point #1	·	mV value = 0 +/- 50
		mV value = +165 to +180 from 7
	buffer	mV value
	pH 10	mV value = -165 to -180 from 7
oH Point #2	4.00 7.00 10.00 4.07 4 177.6 buffer	· mV value
	Ideal s	slope is between 55 and 60
oH Point #3	4.00 7.00 10.00 10 -169.9	
	1.25 mil yellow membrane	
	Acceptable: 4.31 to 8.00 uA	
DISSOLVED OXYGEN (% sat)	n/a 99.3 100 4.56	
DISSOLVED OXYGEN (% sat)	n/a	
Comments or Notes		
somments of Notes		

		CALIBRATION SHEET		
DATE/TIME	7/23/201	3		
NAME	Ben Trustman			
SERIAL NUMBER	169	2		
	Buffer Standard Used	Pre-Calibration Post-Calibration Ce	ell Constant	Notes Pass?
SPECIFIC CONDUCTANCE (µs/cm)	100 (μs/cm)			Acceptable cell const. 4.0-6.0
	500 (μs/cm)	569 500	4.57	Acceptable cell const. 4.0-6.0 y
	1000 (μs/cm)	923 1000	4.96	Acceptable cell const. 4.0-6.0
	circle one	m	ıV Value Slope	1
pH Point #1	4.00 7.00 10.00	7.06	•	pH 7 mV value = 0 +/- 50
•				pH 4 mV value = +165 to +180 from 7
				buffer mV value
				pH 10 mV value = -165 to -180 from 7
pH Point #2	4.00 7.00 10.00	4.01 4	176.7	buffer mV value
				Ideal slope is between 55 and 60
pH Point #3	4.00 7.00 10.00	10.03 10.01	-172.2	1
			1.25 mil yellow membrane	-
		A	Acceptable: 4.31 to 8.00 uA	
DISSOLVED OXYGEN (% sat)	n/a	95.5 100	4.74	
DISSOLVED OXYGEN (% sat)	n/a			
				1
				•
Comments or Notes				

	CALIBRATION SHEET	
DATE/TIME	8/8/2018	
NAME	Ben Trustman	
SERIAL NUMBER	1692	
SPECIFIC CONDUCTANCE (μs/cm)	Buffer Standard Used 100 (μ s/cm) Pre-Calibration Post-Calibration Cell Constant Acceptable cell const. 4.0-6.0	Pass? y y
pH Point #1	circle one mV Value Slope 4.00 7.00 10.00 7.12 7 -15.9 58.82 pH 7 mV value = 0 +/- 50	
pH Point #2	4.00 7.00 10.00 4.1 4 175.6 pH 4 mV value = +165 to +180 from the buffer mV value	
	pH 10 mV value = -165 to -180 fro buffer mV value	m 7
pH Point #3	4.00 7.00 10.00 10.16 10.01 -176.6 Ideal slope is between 55 and 60	
	1.25 mil yellow membrane Acceptable: 4.31 to 8.00 uA	
DISSOLVED OXYGEN (% sat)	n/a	
DISSOLVED OXYGEN (% sat)	n/a	
Comments or Notes		

	CALIBRATION SHEET	
DATE/TIME	1/19/2018	
NAME	Ben Trustman	
SERIAL NUMBER	1693	
	Buffer Standard Used	Notes Pass?
SPECIFIC CONDUCTANCE (µs/cm)	100 (μs/cm) Acceptable (cell const. 4.0-6.0
	500 (μs/cm) 530 500 5.4 Acceptable (cell const. 4.0-6.0
	1000 (μs/cm) 989 1000 5.5 Acceptable 0	cell const. 4.0-6.0
	circle one mV Value Slope	
pH Point #1	4.00 7.00 10.00 7.05 7.02 -20.05 57.7 pH 7 mV val	ue = 0 +/- 50
J		ue = +165 to +180 from 7
	circle one buffer mV v	alue
	pH 10 mV va	alue = -165 to -180 from 7
pH Point #2	4.00 7.00 10.00 4.01 4 171.9 buffer mV v	alue
	Ideal slope i	s between 55 and 60
pH Point #3	4.00 7.00 10.00 10.07 10.04 -172.3	
	1.25 mil yellow membrane	
	Acceptable: 4.31 to 8.00 uA	
DISSOLVED OXYGEN (% sat)	100 3.34	
,		
Comments or Notes		
DO out of range		
-		

			CALIBRA	TION SHEET		
DATE/TIME		1/22/2018	3			
NAME	Ben Trustr	nan				
SERIAL NUMBER		1693	3			
	Buffer St	andard Used	Pre-Calibration Post-	Calibration Cell C	onstant	Notes Pass?
SPECIFIC CONDUCTANCE (µs/cm)	100	(μs/cm)				Acceptable cell const. 4.0-6.0
	500	(μs/cm)	577	500	4.79	Acceptable cell const. 4.0-6.0 y
	1000) (μs/cm)	967	1000	4.95	Acceptable cell const. 4.0-6.0
	cire	cle one		mV V	alue Slope	
pH Point #1		.00 10.00	7.05	7.02	-22	56.6 pH 7 mV value = 0 +/- 50
•						pH 4 mV value = +165 to +180 from 7
	cire	cle one				buffer mV value
						pH 10 mV value = -165 to -180 from 7
pH Point #2	4.00 7	.00 10.00	4.26	4	167.1	buffer mV value
						Ideal slope is between 55 and 60
pH Point #3	4.00 7	.00 10.00	10.05	10.05	-170.1	
			-	1.2!	5 mil yellow men	nbrane
				Acce	eptable: 4.31 to 8	3.00 uA
DISSOLVED OXYGEN (% sat)			90	100	3.31	
						·

				CALIBRA	TION SHEET		
DATE/TIME		3/13/2	018				
NAME	Ben Trus	stman					
SERIAL NUMBER		-	693				
	Buffer	Standard Us	ed Pre-Cal	ibration Post	-Calibration Cell	Constant	Notes Pass?
SPECIFIC CONDUCTANCE (μs/cm)	10	00 (μs/cm)					Acceptable cell const. 4.0-6.0
	50	00 (μs/cm)		507	500	4.88	Acceptable cell const. 4.0-6.0
	10	000 (μs/cm)		1000	1000	4.95	Acceptable cell const. 4.0-6.0
	(circle one			mV	Value Slop	oe e
pH Point #1	4.00	7.00 10.	00	7.05	7.02	-24.1	56.55 pH 7 mV value = 0 +/- 50
·				<u> </u>			pH 4 mV value = +165 to +180 from 7
	Ó	circle one			_		buffer mV value
							pH 10 mV value = -165 to -180 from 7
pH Point #2	4.00	7.00 10.	00	3.95	4	173.4	buffer mV value
							Ideal slope is between 55 and 60
pH Point #3	4.00	7.00 10.	00	9.98	10.04	-164.2	
			-			.25 mil yellow m cceptable: 4.31 to	
DISSOLVED OXYGEN (% sat)				98.7	100	3.78	5 5.55 til. 1

Comments or Notes

PH 10 slightly out of range but slope ok; DO uA out of range-re-calibrated in field on March 29 uA 4.52 and acceptable

Ben Trustma	4/2/2018 in 1693			
			_	
Puffor Stan	1693			
Puffor Stan		_		
Duffor Stan				
Duller Star	idard Used	Pre-Calibration Post-Calibrat	ion Cell Constant	Notes Pass?
100 (բ	ıs/cm)			Acceptable cell const. 4.0-6.0
500 (ֈ	ıs/cm)	507	4.73	Acceptable cell const. 4.0-6.0
1000 (μs/cm)	1016	000 4.8	Acceptable cell const. 4.0-6.0
			mV Value Slop	oe e
4.00 7.00	10.00	7.19 7	.02 -30.6	55.57 pH 7 mV value = 0 +/- 50
				pH 4 mV value = +165 to +180 from 7
circle	one			buffer mV value
				pH 10 mV value = -165 to -180 from 7
1.00 7.00) 10.00	4.17	4 168	buffer mV value
				Ideal slope is between 55 and 60
1.00 7.00) 10.00	10.1 10		
				o 8.00 uA
		102	100 4.31	
4	500 (μ 1000 (μ circle 00 7.00 circle	circle one	500 (μs/cm) 1000 (μs/cm) circle one circle one circle one circle one 1.00 7.00 10.00 7.19 7 1.00 7.00 10.00 4.17	500 (μs/cm) 507 500 4.73 1000 (μs/cm) 507 500 4.73 1000 (μs/cm) 507 500 4.73 1000 4.8 mV Value Slop -30.6 circle one circle one -3.00 7.00 10.00 4.17 4 168 -3.00 7.00 10.00 10.1 10.06 -162.9 1.25 mil yellow m Acceptable: 4.31 t

				CALIBRATION SHEET	Γ			
DATE/TIME			4/25/2018	8				
NAME	Ben T	rustman			_			
SERIAL NUMBER			1693	3				
SPECIFIC CONDUCTANCE (μs/cm)		Fer Standa 100 (μs/ο 500 (μs/ο 1000 (μs/	/cm) /cm)	Pre-Calibration Post-Calibration	Cell Constant		Notes Acceptable cell const. 4.0-6.0 Acceptable cell const. 4.0-6.0 Acceptable cell const. 4.0-6.0 y y	s?
		sirda o	-20		mV Value	Clana	1	
pH Point #1	4.00	circle or 7.00	10.00	7.02	-15.5	Slope 55.5	pH 7 mV value = 0 +/- 50	
piri one ni		circle or			10.0	33.5	pH 4 mV value = +165 to +180 from 7 buffer mV value	
pH Point #2	4.00	7.00	10.00	4	161		pH 10 mV value = -165 to -180 from 7 buffer mV value Ideal slope is between 55 and 60	
pH Point #3	4.00	7.00	10.00	10.02	-170.8		lacer stope to be the control of the control	
DISSOLVED OXYGEN (% sat)					1.25 mil yello	ow membrane .31 to 8.00 uA	T	
DISSOLVED OATGLIN (70 Sat)							1	
Comments or Notes PH 4 slightly out of range but slope ok								

			CAL	IBRATION SHEET	Г			
DATE/TIME		5/1/2018	3					
NAME Be	en Trustman							
SERIAL NUMBER		1693	<u> </u>					
						_		
	Buffer Stand		Pre-Calibration	Post-Calibration	Cell Constant]	<u>Notes</u>	Pass?
SPECIFIC CONDUCTANCE (μs/cm)	100 (μs						Acceptable cell const. 4.0-6.0	
	500 (μs						Acceptable cell const. 4.0-6.0	у
	1000 (μ	ن/cm)				l	Acceptable cell const. 4.0-6.0	У
							_	
	circle (mV Value	Slope		
pH Point #1 4.0	.00 7.00	10.00	7.1	7.02	-23.8	54.95	pH 7 mV value = 0 +/- 50	
			_				pH 4 mV value = +165 to +180 from 7	
	circle (one					buffer mV value	
							pH 10 mV value = -165 to -180 from 7	
pH Point #2	.00 7.00	10.00	4.11	4	163.8		buffer mV value	
							Ideal slope is between 55 and 60	
pH Point #3	.00 7.00	10.00	10.1	10.05				
						ow membrane		
			<u> </u>		Acceptable: 4	.31 to 8.00 uA		
DISSOLVED OXYGEN (% sat)								
Comments or Notes								
PH 10 and 4 slightly out of range but slope ok								

APPENDIX C Constituent Concentrations

Total N		_																										
Site Name	Sample ID																											
		A	ugust 6, 2	017	Αι	ıgust 22, 20	017	Sep	otember 6,	2017	Septemb	er 20, 2017	Baseflow	Nove	ember 16, 2	2017	Jan	nuary 18, 2	018	2018-0	2-06 Base	eflow	ľ	March 13	2018		April 6, 20	018
		concentrati	Flow (cfs)	Instantaneo	concentrati	Flow (cfs)	Instantaneo	concentrati	Flow (cfs)	Instantaneo	concentrati	Flow (cfs)	Instantaneo	concentratio	Flow (cfs)	Instantane	concentrat	Flow (cfs)	Instantan	concentrat	Flow (cfs)	Instanta	concent	r Flow (cfs) Instantane	concentra	Flow (cfs)	Instantaneo
		on (mg/L)		us Load (lbs)	on (mg/L)		us Load (lbs)	on (mg/L)		us Load (lbs)	on (mg/L)		us Load (lbs)	n (mg/L)		ous Load (lbs)	ion (mg/L)		eous Load (lbs)	ion (mg/L)		neous Load	ation (mg/L)		ous Load (lbs)	tion (mg/L)		us Load (lbs)
Chalk Creek @ Chalk Bluff	CC@CB										2.40	0.78	10.09684	2.80	16.01	241.785				2.80	0.55	8.306	3.30	1.42	25.27447			
Alum Creek @ Truckee River	AC@TR											1.9		1.00	1.0	5.12393					0.2					1.20	9.8	63.234719
North Truckee Drain @ Orr Ditch	NTD@ORD										2.00	3.24	34.95061	3.70	4.06	81.0229				3.00	0.94	15.21				3.50	3.69	69.658512
North Truckee Drain at Big Fish Drive	NTD@BFD (1)										1.90	4.90	50.21454	3.10	1.61	26.9195				2.40	1.85	23.95				3.40	3.79	69.502097
North Truckee Drain at Big Fish Drive	NTD@BFD(2)													1.70	4.50	41.2611				2.20	1.81	21.48				2.40	6.39	82.716449
North Truckee Drain at Big Fish Drive	NTD@BFD(3)													1.60	76.00	655.863				2.10	1.77	20.05				2.40	6.38	82.587002
North Truckee Drain at Big Fish Drive	NTD@BFD(4)													1.50	73.40	593.837				2.20	1.77	21				2.30	5.94	73.687541
Thomas Creek @ S. Meadows Pkwy	TC@SMP										0.34	4.30	7.885462	0.95	6.04	30.9332					1.87							
Whites Creek @ Old Virginia Hwy	WC@OVH				0.84	26.76	121.2398					8.15		1.60							3.02							
Steamboat Creek @ Rhodes Road	SBC@RHR										0.31	17.70	29.59475	1.8	15.70	152.424				0.97	34.60	181				1.40	132.00	996.73969
Steamboat Creek @ Narrows	SBC@NAR										0.66	29.80	106.0816	1.50	439.00	3551.69				0.95	42.80	219.3				1.40	137.00	1034.495
Yori drain @ Steamboat Creek	YD@SBC(1)										1.70			2.20	6.70	79.5019				2.20	3.99	47.35				1.80	N/A	N/A
Yori drain @ Steamboat Creek	YD@SBC(2)																			2.10	3.79	42.88						
Yori drain @ Steamboat Creek	YD@SBC(3)										1									2.30	3.72	46.09						
Yori drain @ Steamboat Creek	YD@SBC(4)										1			2.50	8.49	114.479				2.20	3.54	42.04						
Boynton Slough @ Steamboat Creek	BS@SBC				2.30						1.00	19.52	105.2833	1.70	269.91	2474.84				1.30								
Steamboat Creek @ Clean Water Way	SBC@CWW(1)										0.87	68.80	322.8401	1.40	49.70	375.288				1.10	56.00	332.2				2.20	N/A	N/A
Steamboat Creek @ Clean Water Way	SBC@CWW(2)										0.94	70.20	355.9137	2.00	118.00	1272.89				1.10	55.40	328.7						
Steamboat Creek @ Clean Water Way	SBC@CWW(3)										0.90	66.70	323.7786	3.30	446.00	7938.32				1.00	55.40	298.8						
Steamboat Creek @ Clean Water Way	SBC@CWW(4)										0.95	66.70	341.7663	2.40	451.00	5838.05				1.10	54.90	325.7						
Arlington (south)	H-19 (1)	3.90	6.014	126.505				22.00	0.309	36.66578																		
Arlington (south)	H-19 (2)	5.40	5.313	154.7438																								
Arlington (south)	H-19 (3)	6.90	5.313	197.7282				17.00	2.412	221.1597																		
Arlington (south)	H-19 (4)	4.70	4.103	104.011				11.00	2.349	139.3656																		
Fisherman's Park II	D-16 (1)													4.1	1.204	26.625	5.90	1.059	33.6998									
Fisherman's Park II	D-16 (2)																4.90	1.631	43.1052									
Fisherman's Park II	D-16 (3)																4.20	1.603	36.313									
Fisherman's Park II	D-16 (4)													2.40	2.703	34.9894			13.8832				1					
Oxbow Nature Park	C-24 (1)							11.00	0.497	29.48688				2.80	0.754	11.387							1					
Oxbow Nature Park	C-24 (2)							5.20	0.687	19.26814				0.82	3.307	14.6261												
Oxbow Nature Park	C-24 (3)							7.80	1.076					0.67	2.987	10.7942							1					
Oxbow Nature Park	C-24 (4)							3.10		2.023144				1.00	3.859	20.814							1					
Mary Wahl Ditch	SDOE-008936 (1)													10.00	0.06	3.23617							1			3.30	2.866	51.011713
Mary Wahl Ditch	SDOE-008936 (2)													1.70	7.004	64.2207							1			3.00		
Mary Wahl Ditch	SDOE-008936 (3)													2.40	7.433	96.2177							1			3.80	7.507	153.86144
Mary Wahl Ditch	SDOE-008936 (4)							<u> </u>						1.90	4.837	49.5689							1					96.26952

Nitrite as N

Nitrite as N Site Name	Sample ID	1																							
		A	ugust 6, 20	17	Au	igust 22, 20	017	Sept	tember 6, 2	2017	Nove	mber 16,	2017	Jai	nuary 18	, 2018	2018	·02-06 Bas	eflow	Ma	rch 13, 2	018	Į.	April 6, 2	.018
		concentrati on (mg/L)		Instantaneo us Load (Ibs)	concentrati on (mg/L)	Flow (cfs)	Instantaneo us Load (Ibs)	concentrati on (mg/L)	Flow (cfs)	Instantaneo us Load (Ibs)	concentra tion (mg/L)	Flow (cfs)	Instantan eous Load (lbs)	tion	Flow (cfs)	Instantaneou s Load (lbs)		•	Instantaneo us Load (lbs)	concentra tion (mg/L)	Flow (cfs)	Instantane ous Load (Ibs)	concentra tion (mg/L)	Flow (cfs)	Instantaneo us Load (lbs)
Chalk Creek @ Chalk Bluff	CC@CB																								
Alum Creek @ Truckee River	AC@TR																						0.01		
North Truckee Drain @ Orr Ditch	NTD@ORD																								
North Truckee Drain at Big Fish Drive	NTD@BFD (1)										0.05														
North Truckee Drain at Big Fish Drive	NTD@BFD(2)										0.11														
North Truckee Drain at Big Fish Drive	NTD@BFD(3)										0.02														
North Truckee Drain at Big Fish Drive	NTD@BFD(4)										0.01														
Thomas Creek @ S. Meadows Pkwy	TC@SMP																								
Whites Creek @ Old Virginia Hwy	WC@OVH										0.01														
Steamboat Creek @ Rhodes Road	SBC@RHR																0.03								
Steamboat Creek @ Narrows	SBC@NAR																0.02								
Yori drain @ Steamboat Creek	YD@SBC(1)										0.02	6.70	0.6505				0.04						0.05	N/A	N/A
Yori drain @ Steamboat Creek	YD@SBC(2)																0.04								
Yori drain @ Steamboat Creek	YD@SBC(3)																0.04								
Yori drain @ Steamboat Creek	YD@SBC(4)										0.08	8.49	3.8007				0.04								
Boynton Slough @ Steamboat Creek	BS@SBC										0.02						0.02								
Steamboat Creek @ Clean Water Way	SBC@CWW(1)																0.01								
Steamboat Creek @ Clean Water Way	SBC@CWW(2)																0.01								
Steamboat Creek @ Clean Water Way	SBC@CWW(3)										0.02						0.01								
Steamboat Creek @ Clean Water Way	SBC@CWW(4)										0.02						0.01								
Arlington (south)	H-19 (1)							0.31																	
Arlington (south)	H-19 (2)	0.01																							
Arlington (south)	H-19 (3)	0.01						0.29																	
Arlington (south)	H-19 (4)	0.01						0.13																	
Fisherman's Park II	D-16 (1)													0.17											
Fisherman's Park II	D-16 (2)													0.11											
Fisherman's Park II	D-16 (3)													0.12											
Fisherman's Park II	D-16 (4)										0.05			0.10											
Oxbow Nature Park	C-24 (1)							0.03			0.01														
Oxbow Nature Park	C-24 (2)							0.06																	
Oxbow Nature Park	C-24 (3)							0.10																	
Oxbow Nature Park	C-24 (4)							0.08			0.01														
Mary Wahl Ditch	SDOE-008936 (1)																						0.08		
Mary Wahl Ditch	SDOE-008936 (2)										0.01												0.06		
Mary Wahl Ditch	SDOE-008936 (3)										0.02												0.07		
Mary Wahl Ditch	SDOE-008936 (4)										0.02												0.03		

Nitrate as N	Commis ID	7																							
Site Name	Sample ID		August 6, 2	2017	A	ugust 22, 20	017	eptember 6,	2017 Septembe	r 20, 2017	Baseflow	Nov	ember 16,	2017	J	anuary 18, 2	018 2018	3-02-06 Bas	eflow	Ma	arch 13, 1	2018	,	pril 6, 20	18
		concentra tion (mg/L)	Flow (cfs)		on (mg/L)		Instantaneo concent us Load on (mg		Instantaneo concentrati us Load on (mg/L)	Flow (cfs)		concentrati on (mg/L)	Flow (cfs)	Instantaneo us Load (lbs)		Flow (cfs)	Instantaneo concentratio us Load (Ibs) n (mg/L)	Flow (cfs)	Instantaneo us Load (Ibs)			Instantane ous Load (Ibs)	concentratio n (mg/L)	Flow (cfs)	Instantaneou s Load (lbs)
Chalk Creek @ Chalk Bluff	CC@CB	(8/ -/					(103)		2.20		Loud	0.81					2.20			2.20		(183)			
Alum Creek @ Truckee River	AC@TR								0.01			0.15											0.06		
North Truckee Drain @ Orr Ditch	NTD@ORD								1.30	3.24	22.72	1.60					2.00						1.40		
North Truckee Drain at Big Fish Drive	NTD@BFD (1)								1.20	4.90	31.71	2.00					1.40						1.50		
North Truckee Drain at Big Fish Drive	NTD@BFD(2)											0.13					1.40						0.88		
North Truckee Drain at Big Fish Drive	NTD@BFD(3)											0.06					1.30						0.94		
North Truckee Drain at Big Fish Drive	NTD@BFD(4)											0.42					1.30						0.97		
Thomas Creek @ S. Meadows Pkwy	TC@SMP								0.09			0.02													
Whites Creek @ Old Virginia Hwy	WC@OVH				1					8.15		0.09													
Steamboat Creek @ Rhodes Road	SBC@RHR								0.10	17.70	9.356	0.09					0.13						0.18		
Steamboat Creek @ Narrows	SBC@NAR								0.07	29.80	11.25	0.06					0.15						0.16		
Yori drain @ Steamboat Creek	YD@SBC(1)								0.53			0.95	6.70	34.33035			1.50						1.10	N/A	N/A
Yori drain @ Steamboat Creek	YD@SBC(2)																1.40								
Yori drain @ Steamboat Creek	YD@SBC(3)																1.50								
Yori drain @ Steamboat Creek	YD@SBC(4)											1.60	8.49	73.26684			1.50								
Boynton Slough @ Steamboat Creek	BS@SBC				0.50				0.59			0.50					0.82								
	SBC@CWW(1)								0.26	68.80	96.48	0.65					0.34						0.47		
Steamboat Creek @ Clean Water Way	SBC@CWW(2)								0.26	70.20	98.44	0.58					0.34								
Steamboat Creek @ Clean Water Way	SBC@CWW(3)								0.26	66.70	93.54	0.61					0.34								
Steamboat Creek @ Clean Water Way	SBC@CWW(4)								0.25	66.70	89.94	0.59					0.34								
Arlington (south)	H-19 (1)	0.01					3.30																		
Arlington (south)	H-19 (2)																								
Arlington (south)	H-19 (3)						1.60																		
Arlington (south)	H-19 (4)						2.10																		
Fisherman's Park II	D-16 (1)											0.02			1.20										
Fisherman's Park II	D-16 (2)														1.00										
Fisherman's Park II	D-16 (3)														0.76										
Fisherman's Park II	D-16 (4)											0.18			0.64										
Oxbow Nature Park	C-24 (1)						2.80					0.03													
Oxbow Nature Park	C-24 (2)						1.10					0.06													
Oxbow Nature Park	C-24 (3)						2.10					0.15													
Oxbow Nature Park	C-24 (4)						1.00					0.24													
Mary Wahl Ditch	SDOE-008936 (1)											7.90											0.48		
Mary Wahl Ditch	SDOE-008936 (2)											0.02											0.82		
Mary Wahl Ditch	SDOE-008936 (3)											0.26											2.80		
Mary Wahl Ditch	SDOE-008936 (4)											0.37											1.40		

TKN		_																								
Site Name	Sample ID									ı						T			1							
		Au	ugust 6, 20	17 Aug	gust 22, 2	.017	Septe	mber 6,	, 2017	Septembe	r 20, 201	7 Baseflow	Nove	mber 16,	2017	Jan	uary 18, 2	2018	2018	-02-06 Ba	aseflow	M	arch 13, 20	018	Apr	il 6, 2018
		concentrati	Flow (cfs)	Instantaneo concentrati	Flow (cfs)	Instantaneo	concentrati I	Flow (cfs)	Instantaneo	concentrati	Flow (cfs)	Instantaneo d	oncentratio	Flow (cfs)	Instantane	concentrat	Flow (cfs)	Instantano	concentra	Flow (cfs	Instantane	concentr	Flow (cfs)	Instantan	concentrati	Flow (cfs) Instant
		on (mg/L)		us Load (lbs) on (mg/L)		us Load (lbs)			us Load (lbs)		-	us Load (lbs)		Tiow (cis)		ion (mg/L)		ous Load		Tiow (cis	ous Load		Tiow (cis)		on (mg/L)	aneous
															(lbs)			(lbs)	(mg/L)		(lbs)	(mg/L)		(lbs)		Load
Chalk Creek @ Chalk Bluff	CC@CB											0	2.00						0.52			1.00				
Alum Creek @ Truckee River	AC@TR											0	0.88												1.10	
North Truckee Drain @ Orr Ditch	NTD@ORD									0.72	3.24	12.58222	2.00						0.96						2.00	
North Truckee Drain at Big Fish Drive	NTD@BFD (1)									0.71	4.90	18.76438	1.10						1.10						1.90	
North Truckee Drain at Big Fish Drive	NTD@BFD(2)												1.50						0.82						1.60	
North Truckee Drain at Big Fish Drive	NTD@BFD(3)												1.50						0.75						1.50	
North Truckee Drain at Big Fish Drive	NTD@BFD(4)												1.10						0.82						1.40	
Thomas Creek @ S. Meadows Pkwy	TC@SMP									0.25		0	0.92													
Whites Creek @ Old Virginia Hwy	WC@OVH			0.74							8.15	0	1.50													
Steamboat Creek @ Rhodes Road	SBC@RHR									0.21	17.70	9.231169	1.70						0.82						1.20	
Steamboat Creek @ Narrows	SBC@NAR									0.60	29.80	57.28017	1.50						0.77						1.20	
Yori drain @ Steamboat Creek	YD@SBC(1)									1.20			1.20	6.70	43.3646				0.68						0.70	N/A N/A
Yori drain @ Steamboat Creek	YD@SBC(2)																		0.62							
Yori drain @ Steamboat Creek	YD@SBC(3)																		0.79							
Yori drain @ Steamboat Creek	YD@SBC(4)												0.80	8.49	36.6334				0.74							
Boynton Slough @ Steamboat Creek	BS@SBC			1.80						0.42			1.20						0.42							
Steamboat Creek @ Clean Water Way	SBC@CWW(1)									0.62	68.80	99.65239	0.72						0.70						1.80	
Steamboat Creek @ Clean Water Way	SBC@CWW(2)									0.68	70.20	252.3348	1.40						0.76							
Steamboat Creek @ Clean Water Way	SBC@CWW(3)									0.64	66.70	242.3242	2.60						0.70							
Steamboat Creek @ Clean Water Way	SBC@CWW(4)									0.70	66.70	251.8278	1.80						0.76							
Arlington (south)	H-19 (1)	3.90					18.00					0														
Arlington (south)	H-19 (2)	5.40																								
Arlington (south)	H-19 (3)	6.80					15.00																			
Arlington (south)	H-19 (4)	4.60					8.30					0														
Fisherman's Park II	D-16 (1)											0	4.10			4.50										
Fisherman's Park II	D-16 (2)											0				3.80										
Fisherman's Park II	D-16 (3)											0				3.30										
Fisherman's Park II	D-16 (4)											0	2.20			3.20										
Oxbow Nature Park	C-24 (1)						7.80					0	2.80													
Oxbow Nature Park	C-24 (2)						4.00					0	0.76													
Oxbow Nature Park	C-24 (3)						5.60					0	0.52													
Oxbow Nature Park	C-24 (4)						2.00					0	0.78													
Mary Wahl Ditch	SDOE-008936 (1)											0	2.10												2.70	
Mary Wahl Ditch	SDOE-008936 (2)											0	1.70												2.10	
Mary Wahl Ditch	SDOE-008936 (3)											0	2.10												0.92	
Mary Wahl Ditch	SDOE-008936 (4)											0	1.50												0.93	

Total P		_																								
Site Name	Sample ID									_																
		Au	ugust 6, 20	17	A	ugust 22, 20	17 Sep	otember 6,	2017	Septemb	er 20, 2017	Baseflow	Nov	rember 16,	2017	Jan	uary 18, 2	018 2018	3-02-06 Ba	seflow	Ma	arch 13, 20	18	A	pril 6, 201	18
		concentration	Flow (cfs)			Flow (cfs)			Instantaneo		Flow (cfs)	Instantaneo		Flow (cfs)		concentratio	Flow (cfs)	l l	Flow (cfs)			Flow (cfs)			Flow (cfs)	
		(mg/L)		us Load (lbs)	on (mg/L)		us Load on (mg/L) (lbs)		us Load (lbs)	on (mg/L)		us Load (lbs)	n (mg/L)		us Load (lbs)) n (mg/L)		us Load (lbs) n (mg/L)		us Load (lbs)	n (mg/L)		s Load (lbs)	on (mg/L)		ous Load (lbs)
	00.000									0.20	0.70	4.640727	0.26	15.01	22.454.45			0.25	0.55	4 020274	0.42	4.42	2 20224			
Chalk Creek @ Chalk Bluff	CC@CB	+								0.39	0.78	1.640737	0.26	16.01	22.45145			0.35	0.55	1.038271	0.43	1.42	3.29334	0.00	0.0	2 10004
Alum Creek @ Truckee River	AC@TR	+								0.12	1.9 3.24	1.203854	0.20	1.0	1.024786 6.131459			0.03	0.2	0.021035				0.06	9.8	3.10904
North Truckee Drain @ Orr Ditch	NTD@ORD									0.18		3.145555	0.28	4.06	1.302558			0.22		1.115399 1.396946				0.21	3.69	4.17951
North Truckee Drain at Big Fish Drive	NTD@BFD(1)									0.19	4.90	5.021454	0.15	1.61 4.50				0.14	1.85	1.396946				0.14	3.79	2.86185
North Truckee Drain at Big Fish Drive	NTD@BFD(2)												0.21	76.00	5.096964 90.18121			0.13	1.81 1.77	1.145603				0.16 0.17	6.39 6.38	5.51443 5.84991
North Truckee Drain at Big Fish Drive North Truckee Drain at Big Fish Drive	NTD@BFD(3) NTD@BFD(4)												0.22	73.40	67.3015			0.12	1.77	1.145603				0.17	5.94	5.44647
Thomas Creek @ S. Meadows Pkwy	TC@SMP	+								0.09	4.30	2.040943	0.17	6.04	6.837861			0.12		0.635422	0.06	3.70	1.177426	0.17	5.94	5.44647
Whites Creek @ Old Virginia Hwy	WC@OVH	+			0.10	26.76	13.85598			0.09	8.15	1.802276	0.21		0.837801	1		0.06	1.87 3.02	0.635422	0.06	3.70	1.177426			
Steamboat Creek @ Rhodes Road	SBC@RHR				0.10	20.70	13.03390			0.04	17.70	17.18405	0.15	15.70	13.54876			0.03	34.60	52.25332				0.14	132.00	99.674
Steamboat Creek @ Narrows	SBC@NAR	+								0.18	29.80	35.36053	0.16	439.00	639.305			0.28	42.80	71.56246				0.14	137.00	
Yori drain @ Steamboat Creek	_									+	29.80	35.30053			4.697837				3.99	2.022928						
Yori drain @ Steamboat Creek	YD@SBC(1) YD@SBC(2)									0.13			0.13	6.70	4.097637			0.09	3.79	1.919501				0.05	N/A	N/A
Yori drain @ Steamboat Creek										-								0.09	3.79	1.582945						
Yori drain @ Steamboat Creek	YD@SBC(3) YD@SBC(4)									-			0.11	8.49	5.037095			0.08	3.72	1.834519						
Boynton Slough @ Steamboat Creek	BS@SBC				0.22					0.15	19.52	15.7925	0.11	269.91	203.8106			0.10	5.54	1.034319						
Steamboat Creek @ Clean Water Way	SBC@CWW(1)				0.22					0.19	68.80	70.50531	0.14	49.70	45.57064			0.20	56.00	60.40847				0.12	N/A	
Steamboat Creek @ Clean Water Way	SBC@CWW(1)									0.19	70.20	71.94001	0.17	118.00	89.10249			0.20	55.40	59.76123				0.12	IN/A	
Steamboat Creek @ Clean Water Way	SBC@CWW(2)									0.19	66.70	64.75572	0.14	446.00	577.3323			0.20	55.40	59.76123						
Steamboat Creek @ Clean Water Way	SBC@CWW(4)									0.18	66.70	82.74342	0.24	451.00	510.8291			0.22	54.90	65.14406						
Arlington (south)	H-19 (1)	0.58	6.014	18.81357			1.40	0.309	2.333277	0.23	00.70	02.74342	0.21	431.00	310.8231			0.22	34.90	03.14400						
Arlington (south)	H-19 (2)	0.55		15.76095			1.40	0.303	2.333277																	
Arlington (south)	H-19 (3)	0.54		15.47438			1.10	2.412	14.31033																	
Arlington (south)	H-19 (4)	0.47		10.4011			0.79		10.00898																	
Fisherman's Park II	D-16 (1)	0.47	4.103	10.4011			0.75	2.545	10.00030				0.34	1.204	2.207929	1.00	1.059	5.711836								
Fisherman's Park II	D-16 (2)												0.54	1.204	2.207323	0.33	1.631	2.903004								
Fisherman's Park II	D-16 (3)															0.73	1.603	6.311552								
Fisherman's Park II	D-16 (4)												0.22	2.703	3.207366	0.44	0.66	1.566305								
Oxbow Nature Park	C-24 (1)	1					0.56	0.497	1.50115	1			0.47	0.754	1.911389	0.14	3.00									
Oxbow Nature Park	C-24 (2)						0.26	0.687	0.963407				0.17	3.307	3.032235	1										
Oxbow Nature Park	C-24 (3)						0.44	1.076	2.553552				0.15	2.987	2.416608											
Oxbow Nature Park	C-24 (4)	1					0.16		0.10442				0.15	3.859	3.122093	1										
Mary Wahl Ditch	SDOE-008936 (1)						0.10	3.121	5.25112				0.20	0.06	0.064723									0.27	2.866	4.17369
Mary Wahl Ditch	SDOE-008936 (2)												0.20	7.004	7.555373									0.19	1.392	
Mary Wahl Ditch	SDOE-008936 (3)	1											0.20	7.433	8.018145									0.23	7.507	
Mary Wahl Ditch	SDOE-008936 (4)												0.23	4.837	6.000448									0.12		4.81348

Ortho P		_																							
Site Name	Sample ID							_																	
		A	ugust 6, 20	17	Δ	ugust 22, 20	17	Sep	tember 6,	2017	Septemb	er 20, 201 7	Baseflow	Nov	vember 16	, 2017	Jan	uary 18, 2018	201	8-02-06 Baseflow N	/larch 13, 2	018		April 6, 20:	18
		concentrati	Flow (cfs)	Instantan	eo concentrat	i Flow (cfs)	Instantaneo	concentrati	Flow (cfs)	Instantaneo	concentrati	Flow (cfs)	Instantaneo	concentra	Flow (cfs)	Instantaneo co	oncentrati	Flow (cfs) Instantan	concentrati	Flow (cfs) Instantaneou concentrati	Flow (cfs)	Instantaneous	concentratio	Flow (cfs)	Instantaneou
		on (mg/L)	(4.0)	us Load			us Load	on (mg/L)		us Load	on (mg/L)	(0.0)	us Load	tion	(,		on (mg/L)		on (mg/L)	s Load (lbs) on (mg/L)	(0.0)	Load (lbs)	n (mg/L)	(0.0)	Load (lbs)
				(lbs)			(lbs)			(lbs)			(lbs)	(mg/L)		(lbs)		(lbs)							
Chalk Creek @ Chalk Bluff	CC@CB										0.38		0	0.39					0.34	0.35					
Alum Creek @ Truckee River	AC@TR										0.04		0	0.10					0.01	0.55					
North Truckee Drain @ Orr Ditch	NTD@ORD										0.13	3.24	2.27179	0.10					0.01				0.32		
											0.13	4.90	2.907157	0.22					0.17				0.32		
North Truckee Drain at Big Fish Drive	NTD@BFD (1)										0.11	4.90	2.90/15/						0.07				_		
North Truckee Drain at Big Fish Drive	NTD@BFD(2)													0.27									0.22		
North Truckee Drain at Big Fish Drive	NTD@BFD(3)													0.30					0.08				0.20		
North Truckee Drain at Big Fish Drive	NTD@BFD(4)										0.05		0	0.23					0.07	0.04			0.17		
Thomas Creek @ S. Meadows Pkwy	TC@SMP				0.05						0.05	0.45	0	0.15					0.04	0.04					
Whites Creek @ Old Virginia Hwy	WC@OVH				0.05						0.02	8.15	0.879159	0.13					0.01						21/2
Yori drain @ Steamboat Creek	<u>YD@SBC(1)</u>										0.02			0.18	6.70	6.504697			0.04				0.08	N/A	N/A
Yori drain @ Steamboat Creek	YD@SBC(2)																		0.05						
Yori drain @ Steamboat Creek	YD@SBC(3)										1								0.05						
Yori drain @ Steamboat Creek	YD@SBC(4)													0.02	8.49	0.686877			0.06						
Boynton Slough @ Steamboat Creek	BS@SBC				0.09						0.09			0.14					0.09						
Steamboat Creek @ Rhodes Road	SBC@RHR										0.09	17.70	4.044131	0.09					0.17				0.25		
Steamboat Creek @ Narrows	SBC@NAR										0.16	29.80	15.27471	0.17					0.18				0.26		
Steamboat Creek @ Clean Water Way	SBC@CWW(1)										0.14	68.80	22.50215	0.10					0.19				0.23		
Steamboat Creek @ Clean Water Way	SBC@CWW(2)										0.13	70.20	48.24047	0.18					0.20						
Steamboat Creek @ Clean Water Way	SBC@CWW(3)										0.13	66.70	49.22211	0.33					0.20						
Steamboat Creek @ Clean Water Way	SBC@CWW(4)										0.14	66.70	50.36556	0.33					0.21						
Arlington (south)	H-19 (1)	0.05						1.50					0												
Arlington (south)	H-19 (2)	0.04																							
Arlington (south)	H-19 (3)	0.03						0.39																	
Arlington (south)	H-19 (4)	0.03						0.49					0												
Fisherman's Park II	D-16 (1)												0	0.09			0.16								
Fisherman's Park II	D-16 (2)												0				0.20								
Fisherman's Park II	D-16 (3)												0				0.19								
Fisherman's Park II	D-16 (4)												0	0.23			0.16								
Oxbow Nature Park	C-24 (1)							0.29					0	0.2											
Oxbow Nature Park	C-24 (2)							0.16					0	0.084											
Oxbow Nature Park	C-24 (3)							0.25					0	0.07											
Oxbow Nature Park	C-24 (4)							0.14					0	0.093											
Mary Wahl Ditch	SDOE-008936 (1)												0	0.074									0.32		
Mary Wahl Ditch	SDOE-008936 (2)	1											0	0.072									0.22		
Mary Wahl Ditch	SDOE-008936 (3)												0	0.096									0.13		
Mary Wahl Ditch	SDOE-008936 (4)							1					0	0.19									0.12		

Total Dissolved Solid	S	_																							
Site Name	Sample ID																								
		Aug	ust 6, 2017	7 Au	gust 22, 20	017	eptember 6,	2017	Septembe	er 20, 2017	7 Baseflow	Nove	ember 16, 2	2017	Jan	uary 18, 20	18 2018-	02-06 Bas	seflow	M	arch 13, 20	18	P	April 6, 20	18
			T =	1	=1 (()	1	=		1	=1 (()			=1 (6)			=1 (()		=1 (()	I		(()	l	<u> </u>	- (c)	
		concentration (mg/L)	Flow (cfs)	Instantaneo concentrati us Load on (mg/L)	Flow (cfs)	us Load on (mg			on (mg/L)	Flow (cfs)	Instantaneo co us Load	oncentra tion	Flow (cfs)	neous	on (mg/L)	Flow (cfs)	Instantane concentrat ous Load ion (mg/L)	Flow (cfs)		on (mg/L)	Flow (cfs)	ous Load	concentr	Flow (cfs)	Instantaneo us Load
		(6/ -/		(lbs)		(lbs)	-,	(lbs)	011 (1116/ 12)			(mg/L)		Load	OII (IIIB) L)		(lbs)		(lbs)	011 (1116) 2)		(lbs)	(mg/L)		(lbs)
														(lbs)									1		
Chalk Creek @ Chalk Bluff	CC@CB								2200.00	0.78	9255.44	800.00	16.01	69081			2400.00	0.55	7119.57	2400.00	1.42	18381.4			
Alum Creek @ Truckee River	AC@TR								230.00	1.9		330.00	1.0	1690.9			660.00	0.2	533.968				210.00	9.8	11066.08
North Truckee Drain @ Orr Ditch	NTD@ORD								630.00	3.24	11009.44	830.00	4.06	18175			1300.00	0.94	6591				1000.00	3.69	19902.43
North Truckee Drain at Big Fish Drive	NTD@BFD(1)								580.00	4.90		790.00	1.61	6860.1			1200.00	1.85	11973.8				710.00		14513.67
North Truckee Drain at Big Fish Drive	NTD@BFD(2)											300.00	4.50	7281.4			1200.00	1.81	11714.9				490.00	6.39	16887.94
North Truckee Drain at Big Fish Drive	NTD@BFD(3)											140.00	76.00	57388			1200.00	1.77	11456				480.00	6.38	16517.4
North Truckee Drain at Big Fish Drive	NTD@BFD(4)											140.00	73.40	55425			1200.00	1.77	11456				460.00	5.94	14737.51
Thomas Creek @ S. Meadows Pkwy	TC@SMP								91.00	4.30	2110.521	62.00	6.04	2018.8			73.00	1.87	736.282	95.00	3.70	1895.85	 		
Whites Creek @ Old Virginia Hwy	WC@OVH			48.00	26.76	6927.988			52.00	8.15	2285.813	45.00					67.00	3.02	1091.34						
Steamboat Creek @ Rhodes Road	SBC@RHR								140.00	17.70	13365.37	220	15.70	18630			170.00	34.60	31725.2				200.00	132.00	142391.4
Steamboat Creek @ Narrows	SBC@NAR								320.00	29.80	51433.49	410.00	439.00	970796			310.00	42.80	71562.5				280.00	137.00	206899
Yori drain @ Steamboat Creek	YD@SBC(1)								250.00			180.00	6.70	6504.7			360.00	3.99	7747.39				420.00	N/A	N/A
Yori drain @ Steamboat Creek	YD@SBC(2)																370.00	3.79	7555.48						
Yori drain @ Steamboat Creek	YD@SBC(3)																380.00	3.72	7614.16						
Yori drain @ Steamboat Creek	YD@SBC(4)											390.00	8.49	17859			360.00	3.54	6879.45						
Boynton Slough @ Steamboat Creek	BS@SBC			230.00					210.00	19.52	22109.5	89.00	269.91	129565			300.00								
Steamboat Creek @ Clean Water Way	SBC@CWW(1)								280.00	68.80	103902.6	370.00	49.70	99183			340.00	56.00	102694				290.00	N/A	
Steamboat Creek @ Clean Water Way	SBC@CWW(2)								260.00	70.20	98444.22	290.00	118.00	184569			330.00	55.40	98606						
Steamboat Creek @ Clean Water Way	SBC@CWW(3)								280.00	66.70	100731.1	340.00	446.00	817887			350.00	55.40	104582						
Steamboat Creek @ Clean Water Way	SBC@CWW(4)								310.00	66.70	111523.7	320.00	451.00	778406			320.00	54.90	94755						
Arlington (south)	H-19 (1)	57.00	6.014	1848.92		660.0	0.309	1099.973																	
Arlington (south)	H-19 (2)	70.00	5.313	2005.939																					1
Arlington (south)	H-19 (3)	94.00	5.313	2693.689		260.0	0 2.412	3382.443																	1
Arlington (south)	H-19 (4)	100.00	4.103	2212.999		250.0	2.349	3167.399																	1
Fisherman's Park II	D-16 (1)										:	120.00	1.204	779.27	270.00	1.059									-
Fisherman's Park II	D-16 (2)														200.00	1.631									-
Fisherman's Park II	D-16 (3)														210.00	1.603									
Fisherman's Park II	D-16 (4)											82.00	2.703	1195.5	180.00	0.66									1
Oxbow Nature Park	C-24 (1)					360.0	0.497	965.0252				87.00	0.754	353.81											1
Oxbow Nature Park	C-24 (2)					230.0	0.687	852.2448				23.00	3.307	410.24											
Oxbow Nature Park	C-24 (3)					350.0	1.076	2031.235				20.00	2.987	322.21											
Oxbow Nature Park	C-24 (4)					200.0	0.121	130.5254				18.00	3.859	374.65											
Mary Wahl Ditch	SDOE-008936 (1)											340.00	0.06	110.03											1854.971
Mary Wahl Ditch	SDOE-008936 (2)											48.00	7.004	1813.3									120.00	1.392	900.9491
Mary Wahl Ditch	SDOE-008936 (3)											68.00	7.433	2726.2											13766.55
Mary Wahl Ditch	SDOE-008936 (4)										:	130.00	4.837	3391.6											9626.952

		TSS		_																								
		Site Name	Sample ID	7																								
				А	ugust 6, 201	.7 Au	ıgust 22, 20	017	Sept	tember 6, 2	017	Septembe	r 20, 2017	Baseflow	Novem	ber 16, 2	2017	Januar	ry 18, 201	18 2018	3-02-06 Ba	seflow	ı	/larch 13, 2	018	Ар	ril 6, 2018	
				concentrati on (mg/L)	Flow (cfs)	Instantaneo concentrati us Load on (mg/L)	Flow (cfs)	Instantaneo us Load	concentrati on (mg/L)	Flow (cfs)		concentrati on (mg/L)	Flow (cfs)		ncentr F ation	Flow (cfs)		concentrati Flo		nstantan concentra eous Load tion	Flow (cfs)	Instantane ous Load				concentrati on (mg/L)	Flow (cfs)	
				Oii (iiig/L)		(lbs)		(lbs)	Oil (llig/L)		(lbs)	Oil (llig/L)			mg/L)		Load	on (mg/L)	٦	(lbs) (mg/L)		(lbs)	Oii (iiig/L)		(lbs)	Oii (iiig/L)	l l	eous Load (lbs)
						, ,					` '						(lbs)					` '			` '	1		`
1	1	Chalk Creek @ Chalk Bluff	CC@CB									7.00		1	80.00					7.00			64.00					
2	2	Alum Creek @ Truckee River	AC@TR									13.00		1	L8.00					1.00						390.00		
1	3	North Truckee Drain @ Orr Ditch	NTD@ORD									6.00	3.24	104.8518 4	17.00					22.00						45.00		
2	4	North Truckee Drain at Big Fish Drive	NTD@BFD(1)									24.00	4.90	634.2889 4	18.00					44.00						53.00		
2	4	North Truckee Drain at Big Fish Drive	NTD@BFD(2)											8	34.00					10.00						48.00		
2	4	North Truckee Drain at Big Fish Drive	NTD@BFD(3)												32.00					11.00						46.00		
2	4	North Truckee Drain at Big Fish Drive	NTD@BFD(4)												37.00					11.00						42.00		
4	5	Thomas Creek @ S. Meadows Pkwy	TC@SMP									17.00			30.00					2.00			8.00					
1	6	Whites Creek @ Old Virginia Hwy	WC@OVH			61.00						5.00	8.15		60.00					1.00								
1	7	Steamboat Creek @ Rhodes Road	SBC@RHR									28.00		1230.822						25.00						33.00		
2	8	Steamboat Creek @ Narrows	SBC@NAR									22.00	29.80	2100.273 4						32.00						130.00		
5	9	Yori drain @ Steamboat Creek	YD@SBC(1)									81.00		4:	20.00	6.70	15178			24.00						68.00	N/A	N/A
5	9	Yori drain @ Steamboat Creek	YD@SBC(2)																	25.00								
5	9	Yori drain @ Steamboat Creek	YD@SBC(3)																	15.00								
5	9	Yori drain @ Steamboat Creek	YD@SBC(4)													8.49	1328			40.00								
6	10.00	Boynton Slough @ Steamboat Creek	BS@SBC			30.00						23.00			74.00					14.00								
3	11	Steamboat Creek @ Clean Water Way	SBC@CWW(1)									27.00		4339.701 5						32.00						530.00		
3	11	Steamboat Creek @ Clean Water Way	SBC@CWW(2)									37.00		13729.98 2						38.00						\longrightarrow		
3	11	Steamboat Creek @ Clean Water Way	SBC@CWW(3)									43.00		16281.16 7						31.00						\longrightarrow		
3	11	Steamboat Creek @ Clean Water Way	SBC@CWW(4)									37.00	66.70	13310.9	80.00					27.00								
1	12	Arlington (south)	H-19 (1)	53.00					660.00																			
1	12	Arlington (south)	H-19 (2)	230.00																								
1	12	Arlington (south)	H-19 (3)	430.00					1500.00																	\longrightarrow		
1	12	Arlington (south)	H-19 (4)	1100.00					210.00																	<i> </i>		
2	13	Fisherman's Park II	D-16 (1)											1	60.00			100.00								/		
2	13	Fisherman's Park II	D-16 (2)															98.00								<i> </i>		
2	13	Fisherman's Park II	D-16 (3)															79.00										
2	13	Fisherman's Park II	D-16 (4)												72.00			45.00										
3	14	Oxbow Nature Park	C-24 (1)						200.00						30.00											/		
3	14	Oxbow Nature Park	C-24 (2)						120.00						25.00											/		
3	14	Oxbow Nature Park	C-24 (3)						98.00						19.00											/		
3	14	Oxbow Nature Park	C-24 (4)												19.00													
3	15	Mary Wahl Ditch	SDOE-008936 (1)												60.00											110.00		
3	15	Mary Wahl Ditch	SDOE-008936 (2)												70.00											130.00		
3	15	Mary Wahl Ditch	SDOE-008936 (3)												40.00											9.00		
3	15	Mary Wahl Ditch	SDOE-008936 (4)											5	6.00											46.00		

Site Name	Sample ID						_				s (/100 mL)		_										_																	
			10/1/2015		12/10/201	15	DUP?		March 5-6, 20	016	dup?	blank?		4/9/2016				I	9/20/17		August 6, 20	17	A	August 22, 2	2017	September	6, 2017	September	20, 2017 Ba	seflow	November 1	.6, 2017	January	18, 2018	201	L8-02-06 Baseflow	Ma	ch 13, 2018	April 6, 2018	
					 =1 (()				=1 (()					=1 (()			/ BASEFLOW	/ Baseflow	BASEFLOW			.	24721/400	1 =1 (6)	N	DV /400 1 51 /		2001/400 1			400 51 / 6			(()	24001/400		4531/400			
		(mg/L)	Flow (cfs) Ins	Load (lbs)	Flow (cfs)	Load (lbs)	s	(mg/L)	on Flow (cfs)	Load (lbs)	ıs		concentration (mg/L)	Flow (cts)	Load (lbs)	S				MPN/100ml	ni Flow (cf:	us Load (lbs			us Load (lbs)	PN/100mi Flow (c	us Load (lbs)			Load (lbs)	100m Flow (cfs	ous Load (lbs)	MPN/100ml Flow	us Load (II		us Load (lbs)	MPN/100m	ous Load (lbs)	e MPN/100ml Flow (cfs) Instantal us Load ((lbs)
Chalk Creek @ Chalk Bluff	CC@CB			0		0				0					0			1	+	_			1																	
Alum Creek @ Truckee River	AC@TR			0		0				0					0	36		3.1	43.5									43.5							12.20				344.10	
North Truckee Drain @ Orr Ditch	NTD@ORD			0		0				0					0																									
North Truckee Drain @ Kleppe Ln	NTD@KLP (1)			0		0				0					0				1	T																				
North Truckee Drain @ Kleppe Ln	NTD@KLP (2)			0		0				0					0																									
North Truckee Drain @ Kleppe Ln	NTD@KLP (3)			0		0				0					0																									
North Truckee Drain @ Kleppe Ln	NTD@KLP (4)			0		0				0					0		727																							
Thomas Creek @ S. Meadows Pkwy	TC@SMP			0		0				0					0																									
Whites Creek @ Old Virginia Hwy	WC@OVH	3244.0		0		0				0					0	45		23.50	201				1119.90					201							21.80					
Steamboat Creek @ Rhodes Road	SBC@RHR			0		0				0					0			6.3	613.1									613.1							21.30				721.50	
Steamboat Creek @ Narrows	SBC@NAR			0		0				0					0																									
Steamboat Creek @ Clean Water Way	SBC@CWW(1)			0		0				0					0																									
Steamboat Creek @ Clean Water Way				0		0				0					0																									
Steamboat Creek @ Clean Water Way				0		0				0					0																									
Steamboat Creek @ Clean Water Way				0		0				0					0		402																							
Arlington (south)	H-19 (1)			0		0				0					0																									
Arlington (south)	H-19 (2)			0		0				0					0																									
Arlington (south)	H-19 (3)			0		0				0					0																									
Arlington (south)	H-19 (4)			0		0				0					0																									
Fisherman's Park II	D-16 (1)	4840		0		0				0					0																									
Fisherman's Park II	D-16 (2)			0		0				0			1		0			1																						
Fisherman's Park II	D-16 (3)			0		0				0					0			1																						
Fisherman's Park II	D-16 (4)			0																																				
Oxbow Nature Park	C-24 (1)			0																																				
Oxbow Nature Park	C-24 (2)	+		0															+	+																				\longrightarrow
Oxbow Nature Park	C-24 (3)															1				+			-																	
Oxbow Nature Park	C-24 (4)	40.40											1			1	1	1	+	+			1																	
Mary Wahl Ditch	SDOE-008936 (1)	4840														1				+																				\blacksquare
Mary Wahl Ditch	SDOE-008936 (2)															1		1	+	+																				\longrightarrow
Mary Wahl Ditch	SDOE-008936 (3)	+														1			+	+			1																	
Mary Wahl Ditch	SDOE-008936 (4)																																							

APPENDIX D Laboratory Reports

1708186

Specializing in Soil, Hazardous Waste and Water Analysis

OrderID:

8/19/2017

Balance Hydrologics 800 Baucroft Ave. Suite 101 Berkeley, CA 94710

Attn: Brian Hastings

Dear: Brian Hastings

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 8/7/2017. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Andy Smith QA Manager

Western Environmental Testing Laboratory Report Comments

Balance Hydrologics - 1708186

Specific Report Comments

None

Report Legend

В	Blank contamination; Analyte detected above the method reporting limit in an associated blank	
D	Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.	
HT	Sample analyzed beyond the accepted holding time	
J	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit	
M	The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance criteria due to probable matrix interference. The reported result should be considered an estimate.	
N	There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.	
NC	Not calculated due to matrix interference	
QD	The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.	
QL	The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.	
S	Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCs surrogate recovery was within acceptance limits	S
SC	Spike recovery not calculated. Sample concentration >4X the spike amount; therefore, the spike could not be adequately recovered	7
U	The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit	

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B:

A result of zero (0) indicates absence for both coliform and Escherichia coli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolved Oxygen, Sulfite.

Western Environmental Testing Laboratory Analytical Report

Balance Hydrologics Date Printed: 8/19/2017 800 Baucroft Ave. Suite 101 OrderID: 1708186

Berkeley, CA 94710 Attn: Brian Hastings

Phone: (510-704-1000 Fax: **PO\Project:** City of Reno/213136

Customer Sample ID: H-19(1) **Collect Date/Time:** 8/6/2017 16:09

WETLAB Sample ID: **Receive Date:** 8/7/2017 09:55 1708186-001

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.050 M	mg/L	1	0.010	8/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.58	mg/L	1	0.010	8/9/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	53	mg/L	1	1.0	8/9/2017	NV00925
Total Nitrogen	Calc.	3.9	mg/L	1	0.22	8/14/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	57	mg/L	1	10	8/10/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.011	mg/L	1	0.010	8/7/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	8/7/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	3.9	mg/L	0.5	0.20	8/14/2017	NV00925

Customer Sample ID: H-19 (2) **Collect Date/Time:** 8/6/2017 16:11

WETLAB Sample ID: **Receive Date:** 8/7/2017 09:55 1708186-002

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.038	mg/L	1	0.010	8/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.55	mg/L	1	0.010	8/9/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	230	mg/L	1	1.0	8/9/2017	NV00925
Total Nitrogen	Calc.	5.4	mg/L	1	0.42	8/14/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	70	mg/L	1	10	8/10/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	ND	mg/L	1	0.010	8/7/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.011	mg/L	1	0.010	8/7/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	5.4	mg/L	1	0.40	8/14/2017	NV00925

Customer Sample ID: H-19 (3) **Collect Date/Time:** 8/6/2017 16:14

WETLAB Sample ID: 1708186-003 **Receive Date:** 8/7/2017 09:55

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.028	mg/L	1	0.010	8/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.54	mg/L	1	0.010	8/9/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	430	mg/L	1	1.0	8/9/2017	NV00925
Total Nitrogen	Calc.	6.9	mg/L	1	0.42	8/14/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	94	mg/L	1	10	8/10/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	ND	mg/L	1	0.010	8/7/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.013	mg/L	1	0.010	8/7/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	6.8	mg/L	1	0.40	8/14/2017	NV00925

Customer Sample ID: H-19 (4) **Collect Date/Time:** 8/6/2017 16:19

WETLAB Sample ID: 1708186-004 **Receive Date:** 8/7/2017 09:55

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.031	mg/L	1	0.010	8/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.47	mg/L	1	0.010	8/9/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	1100	mg/L	1	1.0	8/9/2017	NV00925
Total Nitrogen	Calc.	4.7	mg/L	1	1.0	8/14/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	100	mg/L	1	10	8/10/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	ND	mg/L	1	0.010	8/7/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.011 M	mg/L	1	0.010	8/7/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	4.6	mg/L	2.5	1.0	8/14/2017	NV00925

Western Environmental Testing Laboratory QC Report

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC17080267	Blank 1	Orthophosphate, as P	SM 4500-P E	ND			mg/L
QC17080289	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L
		Nitrite Nitrogen	EPA 300.0	ND			mg/L
QC17080366	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L
QC17080520	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC17080522	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L
QC17080527	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L
QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC17080267	LCS 1	Orthophosphate, as P	SM 4500-P E	0.238	0.250	95	mg/L
QC17080289	LCS 1	Nitrate Nitrogen	EPA 300.0	0.482	0.500	96	mg/L
		Nitrite Nitrogen	EPA 300.0	0.498	0.500	100	mg/L
QC17080366	LCS 1	Total Phosphorous as P	SM 4500-P E	0.255	0.250	102	mg/L
QC17080520	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	141	150	94	mg/L
QC17080520	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	140	150	93	mg/L
QC17080522	LCS 1	Total Suspended Solids (TSS)	SM 2540D	199	200	99	mg/L
QC17080522	LCS 2	Total Suspended Solids (TSS)	SM 2540D	199	200	99	mg/L
QC17080527	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	1.03	1.00	103	mg/L
				Duplicate	Sample	Duplicate	

QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC17080520	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1708191-001	325	321	mg/L	1 %
QC17080520	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1708191-003	502	498	mg/L	1 %
QC17080522	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1708244-001	58.0	59.0	mg/L	2 %
QC17080522	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1708337-001	2.33	2.33	mg/L	<1%

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC17080267 MS 1	Orthophosphate, as P	SM 4500-P E	1708186-001	0.050	M	0.249	0.264	0.25	mg/L	NC	NC	NC
QC17080289 MS 1	Nitrate Nitrogen	EPA 300.0	1708186-004	ND		0.488	0.488	0.5	mg/L	97	97	<1
	Nitrite Nitrogen	EPA 300.0	1708186-004	0.011	M	0.081	0.084	0.125	mg/L	NC	NC	NC
QC17080289 MS 2	Nitrate Nitrogen	EPA 300.0	1708188-007	ND	НТ	0.471	0.485	0.5	mg/L	93	96	3
	Nitrite Nitrogen	EPA 300.0	1708188-007	ND	M,	0.034	0.034	0.125	mg/L	NC	NC	NC
QC17080366 MS 1	Total Phosphorous as P	SM 4500-P E	1708140-005	ND		0.245	0.265	0.25	mg/L	96	104	8
QC17080366 MS 2	Total Phosphorous as P	SM 4500-P E	1708188-003	0.017		0.256	0.269	0.25	mg/L	96	101	5
QC17080527 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1708111-001	ND	M	0.560	0.510	0.5	mg/L	NC	NC	NC
QC17080527 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1708188-006	ND	M,	0.560	0.555	0.5	mg/L	NC	NC	NC

1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

									To the second		11	708	180	0
A	THE STATE OF							L	ab Nur	mber_	120	216	18	-
WETLAB WESTERN ENVIRONMENTAL	cializing in S	eil Hezen	dava Mar	sto and M	/oter	Analı	reie	R	eport	C	2/2	111-	1	
475 E. Greg Street #119 I S			dous vvas	ste anu vv	acer	Allai			ue Da	te (2/6	111	1	-
tel (775) 355-0202 I fax (77 1084 Lamoille Hwy I Elko, Ne	5) 355-0817							P	age _		of	(75	
tel (775) 777-9933 I fax (77	5) 777-9933	I www.W	/ETLabora	tory.com							Time Red	quirement	S	
Client Balance Hydr	2000	5					5	5-Day*_	S	tandard_	3-0	ay*		
Address 12020 Danne	5 Dige	2	5	vite	13	1	4	18 Hour*		*Surcha	24 arges Will	Hour* Apply		_
	CA	90					Sa	amples Whi	Collecte ch State	d From			Results	Via
City, State & Zip & wellee	2.		5/01					NV		_	1	Fax	Mail O	nly
Contact Brian Hastin	O allanta	ula Nama	TET	_			_	ompliar Yes	nce Mon	itoring?		PDF ther:	EDD	,
Phone 530.550 · 9776		or's Name	1	0 >			Repo	ort to Re	egulator	Agenc	y?	Standard	QC Requ	
Fax —		roject Nam			w			Yes	-(No		Yes	IN	0
P.O. Number	1	1		3136		NO.			An	alyse	s Rea	uested		7-1
Billing Address (if differ	ance h	IONE Add	rose)		S	OF.	T	T	T	1	T			T
Company Balance Hy	1	TCS	1622)		A	С								
Address 800 Buncro	- Way	H	101		P	0			1			11		11
City, State & Zip Berkeley	CA	947	0		E	N								11
Contact <u>Pachel</u> <u>Poita</u>	20				_	A	1	1	1					
Phone <u>510 - 704 ~ 1000</u>					T	N	1		D					
	Janes	hydr	0,00	m	P	E	10	ta	7	1/2	0	1	11	
SAMPLE ID/LOCAT	ION	- 1	DATE	TIME	E	R	10	H	d	15	17		11	Sp
4-19 (1)			3/6/13	16:09	acr	7.	X	X	x 7	(1)	X			1
H-19 (2)	947.9		1	16:11	1	7	X	X.	LY	C/C	X			12
H-19(3)				16:14		2	K	X	X	4	X			3
M-17(7)	-		1/		11	2	×	4.	XX	X	1			4
M-17(4)				16:19	V	-	+	-		1	X			
	1 1 10 10					-								
		700				1000	\vdash	+	-				+	
		2 Kingson								+		-		
					-	-					2		\vdash	
									1	708	-			
										186	4			
		47								100				
Instructions/Comments/Special Requiremen	ts:													
							- 1/1							
Sample Matrix/ Type Key** DW = Drinking Water W	W = Wastewater	SW = Surfac	ce Water MV	V = Monitoring	y Well	SD = S	iolid/Slu	dge SC) = Soil	HW = H	azardous	Waste 01	THER:	,
SAMPLE RECEIPT	DATE	TIME	Sa	mples R	Hino	ıuish	ed By	у		Sa	mples	Recei	ved B	//
Temperature /8.7	c 8/7/17	0955	-X-	450	4	东			}	4	Th	ch	1	1
Custody Seals Intact? Y N Nor	ne)	0/33	1	-	1	V	_	-		//	11	/		1
Number of Containers			-	, = - 5				-	1	//	1			
	- 1													

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636).

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

1708687

Specializing in Soil, Hazardous Waste and Water Analysis

OrderID:

9/1/2017

Attn:

Balance Hydrologics 800 Baucroft Ave. Suite 101 Berkeley, CA 94710

Brian Hastings

Dear: Brian Hastings

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 8/22/2017. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Andy Smith QA Manager

Western Environmental Testing Laboratory Report Comments

Balance Hydrologics - 1708687

Specific Report Comments

The results for Total Coliform (MPN) and Escherichia Coli (MPN) should be considered an estimate. The analysis was performed on an aliquot of sample removed from the non-sterile unpreserved container. This was due to a laboratory error. We apologize for any inconvenience this may have caused.

Report Legend

В	Blank contamination; Analyte detected above the method reporting limit in an associated blank
D	Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT	Sample analyzed beyond the accepted holding time
J	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
M	The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance criteria due to probable matrix interference. The reported result should be considered an estimate.
N	There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC	Not calculated due to matrix interference
QD	The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL	The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
S	Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC	Spike recovery not calculated. Sample concentration >4X the spike amount; therefore, the spike could not be adequately recovered
U	The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B:

A result of zero (0) indicates absence for both coliform and Escherichia coli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolved Oxygen, Sulfite.

Western Environmental Testing Laboratory Analytical Report

Balance HydrologicsDate Printed:9/1/2017800 Baucroft Ave. Suite 101OrderID:1708687

Berkeley, CA 94710
Attn: Brian Hastings

Phone: (510-704-1000 Fax:

PO\Project: 213136

 Customer Sample ID:
 WC @ OVW
 Collect Date/Time:
 8/22/2017
 15:15

 WETLAB Sample ID:
 1708687-001
 Receive Date:
 8/22/2017
 17:05

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.047	mg/L	1	0.010	8/23/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.096	mg/L	1	0.010	8/23/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	61	mg/L	1	1.0	8/24/2017	NV00925
Total Nitrogen	Calc.	0.84	mg/L	1	0.55	8/29/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	48	mg/L	1	10	8/25/2017	NV00925
Microbiological Analyses							
Total Coliform (MPN)	SM 9223B (Quantitray)	>2419.6	MPN/100ml	1	1.0	8/23/2017	NV00925
Escherichia Coli (MPN)	SM 9223B (Quantitray)	1119.9	MPN/100ml	1	1.0	8/23/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	ND	mg/L	1	0.10	8/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.050	8/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.74	mg/L	1	0.40	8/29/2017	NV00925

 Customer Sample ID:
 BS @SBC
 Collect Date/Time:
 8/22/2017
 16:35

 WETLAB Sample ID:
 1708687-002
 Receive Date:
 8/22/2017
 17:05

Analyte Method Results Units DF RLLabID Analyzed **General Chemistry** Orthophosphate, as P SM 4500-P E 0.094 0.010 mg/L 1 8/23/2017 NV00925 Total Phosphorous as P SM 4500-P E 0.22 0.010 8/23/2017 NV00925 mg/L Total Suspended Solids (TSS) SM 2540D 30 mg/L 1.0 8/24/2017 NV00925 Total Nitrogen 2.3 0.55 8/29/2017 NV00925 Calc. mg/L mg/L Total Dissolved Solids (TDS) SM 2540C 230 10 8/25/2017 NV00925 **Anions by Ion Chromatography** Nitrate Nitrogen EPA 300.0 0.50 0.10 8/23/2017 NV00925 mg/L Nitrite Nitrogen EPA 300.0 ND 0.050 NV00925 mg/L 8/23/2017 **Flow Injection Analyses** Total Kjeldahl Nitrogen EPA 351.2 1.8 mg/L 1 0.40 8/29/2017 NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

Western Environmental Testing Laboratory QC Report

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC17080955	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L
QC17080996	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L
		Nitrite Nitrogen	EPA 300.0	ND			mg/L
QC17081046	Blank 1	Total Coliform (MPN)	SM 9223B (Qu	ND			MPN/100ml
		Escherichia Coli (MPN)	SM 9223B (Qu	ND			MPN/100ml
QC17081066	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L
QC17081119	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC17081183	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC17080955	LCS 1	Total Phosphorous as P	SM 4500-P E	0.250	0.250	100	mg/L
QC17080996	LCS 1	Nitrate Nitrogen	EPA 300.0	2.00	2.00	100	mg/L
		Nitrite Nitrogen	EPA 300.0	0.512	0.500	102	mg/L
QC17081066	LCS 1	Total Suspended Solids (TSS)	SM 2540D	198	200	99	mg/L
QC17081066	LCS 2	Total Suspended Solids (TSS)	SM 2540D	198	200	99	mg/L
QC17081119	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	152	150	101	mg/L
QC17081119	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	140	150	93	mg/L
QC17081183	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	1.02	1.00	102	mg/L

QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC17081066	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1708687-002	29.5	29.0	mg/L	2 %
QC17081119	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1708692-001	599	584	mg/L	3 %
QC17081119	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1708695-001	11160	11200	mg/L	<1%

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC17080955 MS 1	Total Phosphorous as P	SM 4500-P E	1708651-002	0.063		0.315	0.304	0.25	mg/L	101	96	4
QC17080955 MS 2	Total Phosphorous as P	SM 4500-P E	1708687-002	0.223		0.500	0.502	0.25	mg/L	111	112	<1
QC17080996 MS 1	Nitrate Nitrogen	EPA 300.0	1708653-001	ND		2.18	2.16	2	mg/L	108	106	<1
	Nitrite Nitrogen	EPA 300.0	1708653-001	ND		0.490	0.491	0.5	mg/L	94	95	<1
QC17081183 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1708726-001	ND		1.06	1.07	1	mg/L	103	104	<1
QC17081183 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1708726-009	ND	M	1.56	1.16	1	mg/L	NC	NC	NC

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

WETLAB
WESTERN ENVIRONMENTAL TESTING LABORATORY

Specializing in Soil, Hazardous Waste and Water Analysis.

475 E. Greg Street #119 | Sparks, Nevada 89431 | www.WETLaboratory.com

tel (775) 355-0202 I fax (775) 355-0817 1084 Lamoille Highway I Elko, Nevada 89801

tel (775) 777-9933 I fax (775) 777-9933 3230 Polaris Ave., Suite 4 I Las Vegas, Nevada 89102

tel (702) 475-8899 I fax (702) 776-6152

WETLAB Order ID. 1708087
Sparks Control #
Elko Control #
LV Control #
Report Due Date
Page of

ber (70E) 470 0000 T Tax (702,7700102				r age				
Client Balance Hydre	logics					und Time Req	uirements		
Address 12020 Donner	V3 =1	BI		5 Day* (25°	Stand		ır* (50%)		
City, State & Zip Trucker	CA 961	61			00%)		ır* (200%)		
contact Brian Hastine				Sample	s Collected Fr		Report Res	ults Via	
Phone 530.550.9776	Collector's Name	BT		NV_	CA				
	PWS/Project Name					ngr	PDF EDD Other		
Fax		117:21			No Regulatory Ag	ency?	Standard QC I		
P.O. Number	PWS/Project Number		s NO.	Yes	Analy	ses Requ	rested	No	
Billing Address (if different	than Client Address		A OF C	TI		T	II		
	plonics		M O			3			
Address 600 Puncro	470 / 1 100	cite 101	L N T	- -	6	1 3	1 1		
City, State & Zip Berkeley C		10	EA	150	124				
Contact Rachel Boitan			т 1	14-	NEL	77			
Phone 510-704-1000 F			Y N P E	12/2	NE	2 3			
	ancehydro	PRES	PER	190	SH	TIN		Spl.	
SAMPLE ID/LOCATION	DATE 1	TIME TYPE	** S	25 15		7.9	+	No.	
WC (a) BUW	9/22/17	15:15 800	993	xx	4 7 7	17		1	
B5 (W 5BL	5/22/17	16:35	12	XX	XXI	X		2	
0			/						
							8 2		
				4		170	8 -		
						68	7 2		
						100	T		
			-						
Instructions/Comments/Special Requirements:						1			
Sample Matrix Key** DW = Drinking Water WW = 1	Wastewater SW = Surface W	/ater MW = Monitoring	Well SD = So	olid/Sludge St	O = Soil HW =	Hazardous W	aste OTHER:		
SAMPLE PRESERVATIVES: 1=Unpres	served 2=H2SO4 3:	=NaOH 4=HCI	5=HNO3	6=Na2S2	203 7=Zn	OAc+NaO	H 8=HCI/	VOA Vial	
Temp Custody Seal # of Containers I	DATE TIME	Samples Re	linguish	egt By	5	Samples F	Received	Ву	
1 - -	2/17 17:05	MI	P			(00)			
°C Y N None	111	8	2						
°C Y N None				9					
°C Y N None							-		
WETLAB'S Standard Terms and Con	ditions apply unles	ss written agree	ements s	pecify ot	herwise. I	Payment	terms are	Net 30.	
		9							

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636). initial

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

WETLAB will dispose of samples 90 days from sample receipt. Client may request a longer sample storage time for an additional fee.

Please contact your Project Manager for details. initial

301.2E

1709151

Specializing in Soil, Hazardous Waste and Water Analysis

OrderID:

9/20/2017

Balance Hydrologics 800 Baucroft Ave. Suite 101 Berkeley, CA 94710

Attn: Brian Hastings

Dear: Brian Hastings

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 9/7/2017. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Andy Smith QA Manager

Western Environmental Testing Laboratory Report Comments

Balance Hydrologics - 1709151

Specific Report Comments

None

Report Legend

В	 Blank contamination; Analyte detected above the method reporting limit in an associated blank
D	 Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT	 Sample analyzed beyond the accepted holding time
J	 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
M	 The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance criteria due to probable matrix interference. The reported result should be considered an estimate.
N	 There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC	 Not calculated due to matrix interference
QD	 The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL	 The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
S	 Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC	 Spike recovery not calculated. Sample concentration >4X the spike amount; therefore, the spike could not be adequately recovered
U	 The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B:

A result of zero (0) indicates absence for both coliform and Escherichia coli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolved Oxygen, Sulfite.

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

Western Environmental Testing Laboratory Analytical Report

 Balance Hydrologics
 Date Printed:
 9/20/2017

 800 Baucroft Ave. Suite 101
 OrderID:
 1709151

Berkeley, CA 94710
Attn: Brian Hastings

Phone: (510-704-1000 **Fax: PO\Project:** 213136 / City of Reno

 Customer Sample ID:
 C-24 (1)
 Collect Date/Time:
 9/6/2017
 16:11

 WETLAB Sample ID:
 1709151-001
 Receive Date:
 9/7/2017
 13:17

DF Analyte Method Results Units RL Analyzed LabID **General Chemistry** 0.010 Orthophosphate, as P SM 4500-P E 0.29 1 9/7/2017 NV00925 mg/L 0.010 Total Phosphorous as P SM 4500-P E 0.56 mg/L 1 9/12/2017 NV00925 Total Suspended Solids (TSS) SM 2540D 200 1.0 9/8/2017 mg/L 1 NV00925 Total Nitrogen Calc. 11 mg/L 1 0.42 9/15/2017 NV00925 Total Dissolved Solids (TDS) SM 2540C 360 mg/L 1 10 9/8/2017 NV00925 **Anions by Ion Chromatography** Nitrate Nitrogen 0.010 9/7/2017 EPA 300.0 2.8 mg/L 1 NV00925 Nitrite Nitrogen EPA 300.0 0.028 0.010 9/7/2017 NV00925 mg/L 1 **Flow Injection Analyses** Total Kjeldahl Nitrogen EPA 351.2 7.8 mg/L 0.40 9/15/2017 NV00925

 Customer Sample ID:
 C-24 (2)
 Collect Date/Time:
 9/6/2017
 21:05

 WETLAB Sample ID:
 1709151-002
 Receive Date:
 9/7/2017
 13:17

Analyte Method Results Units DF RL Analyzed LabID **General Chemistry** 0.010 Orthophosphate, as P SM 4500-P E 9/7/2017 NV00925 0.16 mg/L 1 SM 4500-P E 0.010 NV00925 Total Phosphorous as P 0.26 mg/L 9/12/2017 120 Total Suspended Solids (TSS) SM 2540D mg/L 1.0 9/8/2017 NV00925 Total Nitrogen Calc. 5.2 mg/L 0.22 9/15/2017 NV00925 Total Dissolved Solids (TDS) 230 10 SM 2540C mg/L 1 9/8/2017 NV00925 **Anions by Ion Chromatography** Nitrate Nitrogen 1.1 0.010 9/7/2017 NV00925 EPA 300.0 mg/L 0.010 Nitrite Nitrogen EPA 300.0 0.060 1 9/7/2017 NV00925 mg/L **Flow Injection Analyses** Total Kjeldahl Nitrogen EPA 351.2 4.0 0.5 0.20 9/15/2017 NV00925 mg/L

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

fax (775) 777-9933

EPA LAB ID: NV00926

Customer Sample ID: C-24 (3)

WETLAB Sample ID: 1709151-003

Collect Date/Time: 9/6/2017 21:21

Receive Date: 9/7/2017 13:17

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.25	mg/L	1	0.010	9/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.44	mg/L	1	0.010	9/12/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	98	mg/L	1	1.0	9/8/2017	NV00925
Total Nitrogen	Calc.	7.8	mg/L	1	0.42	9/15/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	350	mg/L	1	10	9/8/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	2.1	mg/L	1	0.010	9/7/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.095	mg/L	1	0.010	9/7/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	5.6	mg/L	1	0.40	9/15/2017	NV00925

Customer Sample ID: C-24 (4) **Collect Date/Time:** 9/6/2017 22:55

WETLAB Sample ID: 1709151-004 **Receive Date:** 9/7/2017 13:17

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.14	mg/L	1	0.010	9/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.16	mg/L	1	0.010	9/12/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	ND	mg/L	1	10	9/8/2017	NV00925
Total Nitrogen	Calc.	3.1	mg/L	1	0.22	9/15/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	200	mg/L	1	10	9/8/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.0	mg/L	1	0.010	9/7/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.075	mg/L	1	0.010	9/7/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	2.0	mg/L	0.5	0.20	9/15/2017	NV00925

 Customer Sample ID:
 H-19 (1)
 Collect Date/Time:
 9/6/2017
 16:02

 WETLAB Sample ID:
 1709151-005
 Receive Date:
 9/7/2017
 13:17

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	1.5	mg/L	5	0.050	9/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	1.4	mg/L	5	0.050	9/12/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	660	mg/L	1	1.0	9/8/2017	NV00925
Total Nitrogen	Calc.	22	mg/L	1	2.0	9/15/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	660	mg/L	1	10	9/8/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	3.3	mg/L	1	0.010	9/7/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.31	mg/L	1	0.010	9/7/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	18 SC	mg/L	5	2.0	9/15/2017	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 4 of 7

Customer Sample ID: H-19 (3)

WETLAB Sample ID: 1709151-006

Collect Date/Time: 9/6/2017 16:10

Receive Date: 9/7/2017 13:17

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.39	mg/L	1	0.010	9/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	1.1	mg/L	5	0.050	9/12/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	1500	mg/L	1	1.0	9/8/2017	NV00925
Total Nitrogen	Calc.	17	mg/L	1	1.0	9/15/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	260	mg/L	1	10	9/8/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.6	mg/L	1	0.010	9/7/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.29	mg/L	1	0.010	9/7/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	15	mg/L	2.5	1.0	9/15/2017	NV00925

Customer Sample ID: H-19 (4) **Collect Date/Time:** 9/6/2017 16:17

WETLAB Sample ID: 1709151-007 **Receive Date:** 9/7/2017 13:17

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.49	mg/L	1	0.010	9/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.79	mg/L	1	0.010	9/12/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	210	mg/L	1	1.0	9/8/2017	NV00925
Total Nitrogen	Calc.	11	mg/L	1	0.42	9/15/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	250	mg/L	1	10	9/8/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	2.1	mg/L	1	0.010	9/7/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.13	mg/L	1	0.010	9/7/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	8.3	mg/L	1	0.40	9/15/2017	NV00925

 Customer Sample ID:
 Arlington@TR
 Collect Date/Time:
 9/6/2017
 17:00

 WETLAB Sample ID:
 1709151-008
 Receive Date:
 9/7/2017
 13:17

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.50	mg/L	1	0.010	9/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.64	mg/L	1	0.010	9/12/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	460	mg/L	1	1.0	9/8/2017	NV00925
Total Nitrogen	Calc.	9.2	mg/L	1	0.42	9/15/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	250	mg/L	1	10	9/8/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	2.1	mg/L	1	0.010	9/7/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/7/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	7.2	mg/L	1	0.40	9/15/2017	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 5 of 7

Customer Sample ID: Blank Collect Date/Time: 9/6/2017

WETLAB Sample ID: 1709151-009 **Receive Date:** 9/7/2017 13:17

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	ND	mg/L	1	0.010	9/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	ND	mg/L	1	0.010	9/12/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	ND	mg/L	1	1	9/8/2017	NV00925
Total Nitrogen	Calc.	ND	mg/L	1	0.22	9/15/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	ND	mg/L	1	10	9/8/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/7/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/7/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	ND	mg/L	0.5	0.20	9/15/2017	NV00925

Western Environmental Testing Laboratory QC Report

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC17090226	Blank 1	Orthophosphate, as P	SM 4500-P E	ND			mg/L
QC17090241	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L
		Nitrite Nitrogen	EPA 300.0	ND			mg/L
QC17090324	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L
QC17090326	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC17090328	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC17090397	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L
QC17090578	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L
QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC17090226	LCS 1	Orthophosphate, as P	SM 4500-P E	0.236	0.250	94	mg/L
QC17090241	LCS 1	Nitrate Nitrogen	EPA 300.0	0.490	0.500	98	mg/L
		Nitrite Nitrogen	EPA 300.0	0.514	0.500	103	mg/L
QC17090324	LCS 1	Total Suspended Solids (TSS)	SM 2540D	199	200	99	mg/L
QC17090324	LCS 2	Total Suspended Solids (TSS)	SM 2540D	198	200	99	mg/L
QC17090326	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	161	150	107	mg/L
QC17090326	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	145	150	97	mg/L
QC17090328	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	156	150	104	mg/L
QC17090328	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	145	150	97	mg/L
QC17090397	LCS 1	Total Phosphorous as P	SM 4500-P E	0.250	0.250	100	mg/L
QC17090578	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	1.00	1.00		mg/L
				Duplicate	Sample	Duplicate	

QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC17090324	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1709143-001	4.00	4.00	mg/L	<1%
QC17090324	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1709151-006	1457	1440	mg/L	1 %
QC17090326	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1709089-001	299	304	mg/L	2 %
QC17090326	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1709128-001	655	653	mg/L	<1%
QC17090328	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1709128-002	634	645	mg/L	2 %
QC17090328	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1709133-003	527	516	mg/L	2 %

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC17090226 MS 1	Orthophosphate, as P	SM 4500-P E	1709151-001	0.288		0.510	0.511	0.25	mg/L	89	89	<1
QC17090241 MS 1	Nitrate Nitrogen	EPA 300.0	1709119-001	0.170		2.80	2.83	0.5	mg/L	105	106	1
	Nitrite Nitrogen	EPA 300.0	1709119-001	ND	D	0.518	0.530	0.125	mg/L	82	84	2
QC17090241 MS 2	Nitrate Nitrogen	EPA 300.0	1709151-009	ND		0.532	0.537	0.5	mg/L	106	107	<1
	Nitrite Nitrogen	EPA 300.0	1709151-009	ND		0.127	0.129	0.125	mg/L	102	103	2
QC17090397 MS 1	Total Phosphorous as P	SM 4500-P E	1709143-001	ND		0.250	0.258	0.25	mg/L	103	106	3
QC17090397 MS 2	Total Phosphorous as P	SM 4500-P E	1709151-009	ND		0.257	0.266	0.25	mg/L	108	112	3
QC17090578 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1709143-001	0.078	J	0.615	0.585	0.5	mg/L	107	101	5
QC17090578 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1709151-005	18.2	SC	17.4	16.1	0.5	mg/L	NC	NC	NC

 $DF \hbox{=-}Dilution\ Factor,\ RL \hbox{=-}Reporting\ Limit,\ ND \hbox{=-}Not\ Detected\ or\ <} RL$

Page 7 of 7

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

WETLAB WESTERN ENVIRONMENTAL TESTING LABORATORY 475 E. Greg Street #119 I Sparks, Nevada 8 tel (775) 355-0202 I fax (775) 355-0817 1084 Lamoille Hwy I Elko, Nevada 89801 tel (775) 777-9933 I fax (775) 777-9933 I Client Balance Hydrologic Address Zozo Donner Page City, State & Zip Truckee A 96 Contact Brian Hasting Phone 530-550-9776 Collector's Fax PWS/Proje Email Masting & Manuel Billing Address (if different than Clier	www.N	WETLabora	of Ze		Anai		5-Day*_48 Hour	St	e around andard	_ of I Time R	Requirem I-Day*_ 24 Hour* Vill Apply		sults Via	
475 E. Greg Street #119 Sparks, Nevada 8 tel (775) 355-0202 fax (775) 355-0817 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 Client Balance Hydrologic Address Zozo Donner Page City, State & Zip Truckee A 96 Contact Brian Hastings Phone 530-550-9776 Collector's Fax PWS/Proje P.O. Number PWS/Proje Email bhastings Dalance V	www.N	WETLabora	of Ze		Anai		5-Day*_48 Hour	Page	around andard *Surch	Time R	Requirer B-Day*_ 24 Hour* Vill Apply		sults Via	
tel (775) 355-0202 I fax (775) 355-0817 1084 Lamoille Hwy I Elko, Nevada 89801 tel (775) 777-9933 I fax (775) 777-9933 I Client Balance Hydro logic Address IZOZO Donner Page City, State & Zip Truckee CA 90 Contact Brian Hastings Phone 530-550-9776 Collector's Fax PWS/Proje P.O. Number PWS/Proje Email bhastings Dalance V	Name ect Nur	d bl DT ne City	of Re				5-Day*_ 48 Hour Samples Wh	Turna St. Collected ich State CA	andard	Time R	Requirer B-Day*_ 24 Hour* Vill Apply		sults Via	
Client Balance Hydro Coaic Address 12020 Donner Page City, State & Zip Truckee CA 90 Contact Brian Hastings Phone 530.550.9776 Collector's Fax PWS/Proje P.O. Number PWS/Proje Email bhastings Dalance	S Name ect Name ect Number Added	d bl DT ne City	of Re				5-Day*_ 48 Hour Samples Wh	Turna St. Collected ich State CA	andard	Time R	Requirer B-Day*_ 24 Hour* Vill Apply		sults Via	
Client Balance Hydrologic Address 12020 Donner Pags City, State & Zip Truckee CA 91 Contact Brian Hastings Phone 530.550.9776 Collector's Fax PWS/Proje P.O. Number PWS/Proje Email bhastings balance	S Name ect Name ect Number Added	d bl DT ne City	of Re				48 Hour	Collected	*Surch	3 2 arges W	24 Hour* /ill Apply		sults Via	
City, State & Zip Truckee CA 90 Contact Brian Hastings Phone 530.550.9776 Collector's Pass P.O. Number Email bhastings Donner Pass Collector's PWS/Proje Email bhastings Dalance	Name ect Nar ect Nur	DT me City					48 Hour	Collected		arges W	24 Hour* /ill Apply		sults Via	
City, State & Zip Truckee CA 90 Contact Brian Hastings Phone 530.550.9776 Collector's Fax PWS/Proje P.O. Number PWS/Proje Email bhastings balance	Name ect Nar ect Nur ect Nur	DT me City					NV O	Collected ich State			Re		ults Via	
Phone 530.550.9776 Collector's Pax PWS/Proje P.O. Number PWS/Proje Email bhafings balance	Name ect Nar ect Nur ect Nur	DT me City					NV O	CA_	?			port Res	ults Via	
Phone 530.550.9776 Collector's PWS/Proje P.O. Number Email bhating a balance by	ect Nar ect Nur ort Add	ne City					Ø1	_			FOV			
P.O. Number Email bhatines a balance b	ect Nar ect Nur ort Add	ne City		1			Complia	nce Monit	oring?		DF)	ail Only	
P.O. Number P.WS/Proje Email bhatines a balance b	nt Ado						(Yes)		No		Other:_	5		
Email bhastines a balance	nt Add	mber 21		~		Rej	Yes	egulatory	Agenc	7	Yes	and QC	Require No	d?
Billing Address (if different than Clier	nt Add		3136											
Billing Address (if different than Clier	nt Ado	10.11			NO.	-		Ana	lyse	s Re	quest	ed		
	1	dress)		SA	OF									
Company Balance Hydrologia		1		M	C									
Address 900 Bancroft Way	50	ute 10		P	0 N	L	1							
City, State & Zip Berkeley CA 997 Contact Rachel Bojtano	10			E	Т	ota	1-1	1 6	7	1	. [1 1		
Phone 510 · 704 · 1000				Т	A	8	0	73	1	7/-	1/	1 1		
Fax				Y	N		8	05	- 3	10	7			
Email Thoitano a palance by	dro	· con	۸.	P	E	Z		NO		2		-		
SAMPLE ID/LOCATION		DATE	TIME	E	R		V							Spl.
C-24(1)		9/6/17	16:11	Ag	2	K	X	XX	×	X				1
(-24(2)			21:05	Aq	Z	×	X	LX	X	X				2
C-24(3)			21:21	Are	Z	X	X	XX	×	×	1			3
C-24(4)	-		22:55	T	2	×	X	XX	X	X				4
H-19 (1)	-		16:02		7	X	X	XX	×	X				5
H-19(3)			16:10		2	X	X.	XX	X	X	1			6
H-19 (4)		V	16:17	1	2	X	X.	XX	X	X				7
Arlington @ TR	5-1-	9/1/12	17:00	1	2	X	X	XX	×	X		1		8
RLARIN		19011	11.00		7	X	XX	(X	X	X	-17	709	2	9
									-	-	_15	1	0	1
													1	
nstructions/Comments/Special Requirements:			2				-						-	
ionada. Sommento opoda rreguliamento.	-										-		1	
Sample Matrix/ Type Key** DW = Drinking Water WW = Wastewater SW	= Surfac	ce Water MW	= Monitoring	Well S	SD = S	olid/Slu	dge SO	= Soil HV	N = Ha	zardous	Waste	OTHER		
SAMPLE RECEIPT DATE T	ГІМЕ	San	nples Re	ling	uistn	B	V		Sar	nples	Rec	eived	Ву	
Temperature (2, 5 °C 9.7.17 13	3:17	1		-	4		2	1	1	14	/	2	-	~
Custody Seals Intact? Y N None				2	V		7			-				
Number of Containers			- Carrier				-			-			-	-
WETLAB'S Standard Terms and Conditions app	oly un	less writ	ton agra						-		.,		Mes	

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636).

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

1709600

Specializing in Soil, Hazardous Waste and Water Analysis

OrderID:

10/3/2017

Balance Hydrologics 800 Baucroft Ave. Suite 101 Berkeley, CA 94710

Attn: Brian Hastings

Dear: Brian Hastings

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 9/20/2017. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Andy Smith QA Manager

Western Environmental Testing Laboratory Report Comments

Balance Hydrologics - 1709600

Specific Report Comments

None

Report Legend

В	 Blank contamination; Analyte detected above the method reporting limit in an associated blank
D	 Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT	 Sample analyzed beyond the accepted holding time
J	 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
M	 The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance criteria due to probable matrix interference. The reported result should be considered an estimate.
N	 There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC	 Not calculated due to matrix interference
QD	 The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL	 The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
S	 Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC	 Spike recovery not calculated. Sample concentration >4X the spike amount; therefore, the spike could not be adequately recovered
U	 The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B:

A result of zero (0) indicates absence for both coliform and Escherichia coli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolved Oxygen, Sulfite.

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

Western Environmental Testing Laboratory Analytical Report

Balance HydrologicsDate Printed:10/3/2017800 Baucroft Ave. Suite 101OrderID:1709600

Berkeley, CA 94710
Attn: Brian Hastings

Phone: (510-704-1000 **Fax:**

PO\Project: 213136

 Customer Sample ID:
 AC @ TR
 Collect Date/Time:
 9/20/2017
 08:56

 WETLAB Sample ID:
 1709600-001
 Receive Date:
 9/20/2017
 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
·						<u> </u>	
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.038	mg/L	1	0.010	9/21/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.12	mg/L	1	0.010	9/22/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	13	mg/L	1	1.0	9/21/2017	NV00925
Total Nitrogen	Calc.	ND	mg/L	1	0.22	9/25/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	230	mg/L	1	10	9/26/2017	NV00925
Microbiological Analyses							
Total Coliform (MPN)	SM 9223B (Quantitray)	>2419.6	MPN/100ml	1	1.0	9/21/2017	NV00925
Escherichia Coli (MPN)	SM 9223B (Quantitray)	43.5	MPN/100ml	1	1.0	9/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.012	mg/L	1	0.010	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	ND	mg/L	0.5	0.20	9/25/2017	NV00925

 Customer Sample ID:
 CC @ CB
 Collect Date/Time:
 9/20/2017
 10:15

 WETLAB Sample ID:
 1709600-002
 Receive Date:
 9/20/2017
 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.38	mg/L	1	0.010	9/21/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.39	mg/L	1	0.010	9/25/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	7	mg/L	1	1	9/21/2017	NV00925
Total Nitrogen	Calc.	2.4	mg/L	1	0.30	9/25/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	2200	mg/L	1	10	9/26/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	2.2	mg/L	5	0.050	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND D	mg/L	5	0.050	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	ND	mg/L	0.5	0.20	9/25/2017	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Customer Sample ID: SBC @ RHR Collect Date/Time: 9/20/2017 10:55

WETLAB Sample ID: 1709600-003 **Receive Date:** 9/20/2017 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.092	mg/L	1	0.010	9/21/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.18	mg/L	1	0.010	9/25/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	28	mg/L	1	1.0	9/21/2017	NV00925
Total Nitrogen	Calc.	0.31	mg/L	1	0.22	9/25/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	140	mg/L	1	10	9/26/2017	NV00925
Microbiological Analyses							
Total Coliform (MPN)	SM 9223B (Quantitray)	>2419.6	MPN/100ml	1	1.0	9/20/2017	NV00925
Escherichia Coli (MPN)	SM 9223B (Quantitray)	613.1	MPN/100ml	1	1.0	9/20/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.098	mg/L	1	0.010	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.21	mg/L	0.5	0.20	9/25/2017	NV00925

WETLAB Sample ID: 1709600-004 **Receive Date:** 9/20/2017 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.020	mg/L	1	0.010	9/21/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.041	mg/L	1	0.010	9/25/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	5	mg/L	1	1	9/21/2017	NV00925
Total Nitrogen	Calc.	ND	mg/L	1	0.22	9/25/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	52	mg/L	1	10	9/26/2017	NV00925
Microbiological Analyses							
Total Coliform (MPN)	SM 9223B (Quantitray)	>2419.6	MPN/100ml	1	1.0	9/20/2017	NV00925
Escherichia Coli (MPN)	SM 9223B (Quantitray)	201.4	MPN/100ml	1	1.0	9/20/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	ND	mg/L	0.5	0.20	9/25/2017	NV00925

 Customer Sample ID:
 TC @ SMP
 Collect Date/Time:
 9/20/2017
 12:00

 WETLAB Sample ID:
 1709600-005
 Receive Date:
 9/20/2017
 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.050	mg/L	1	0.010	9/21/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.088	mg/L	1	0.010	9/25/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	17	mg/L	1	1.0	9/21/2017	NV00925
Total Nitrogen	Calc.	0.34	mg/L	1	0.22	9/25/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	91	mg/L	1	10	9/26/2017	NV00925

 $DF \hbox{=-}Dilution\ Factor,\ RL \hbox{=-}Reporting\ Limit,\ ND \hbox{=-}Not\ Detected\ or\ <} RL$

Page 4 of 10

Customer Sample ID: TC @ SMP Collect Date/Time: 9/20/2017 12:00

WETLAB Sample ID: 1709600-005 **Receive Date:** 9/20/2017 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.088	mg/L	1	0.010	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.25	mg/L	0.5	0.20	9/25/2017	NV00925

Customer Sample ID: SBC @ NAR Collect Date/Time: 9/20/2017 12:33

WETLAB Sample ID: 1709600-006 **Receive Date:** 9/20/2017 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.16	mg/L	1	0.010	9/21/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.22	mg/L	1	0.010	9/25/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	22	mg/L	1	1.0	9/21/2017	NV00925
Total Nitrogen	Calc.	0.66	mg/L	1	0.22	9/25/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	320	mg/L	1	10	9/26/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.070	mg/L	1	0.010	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.60	mg/L	0.5	0.20	9/25/2017	NV00925

Customer Sample ID: NTD @ BFD Collect Date/Time: 9/20/2017 13:25

WETLAB Sample ID: 1709600-007 **Receive Date:** 9/20/2017 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.11	mg/L	1	0.010	9/21/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.19	mg/L	1	0.010	9/25/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	24	mg/L	1	1.0	9/26/2017	NV00925
Total Nitrogen	Calc.	1.9	mg/L	1	0.30	9/25/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	580	mg/L	1	10	9/26/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.2	mg/L	5	0.050	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND D	mg/L	5	0.050	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.71	mg/L	0.5	0.20	9/25/2017	NV00925

Customer Sample ID: NTD @ ORD **Collect Date/Time:** 9/20/2017 14:00

WETLAB Sample ID: 1709600-008 **Receive Date:** 9/20/2017 17:30

•							
Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.13	mg/L	1	0.010	9/21/2017	NV00925
DF=Dilution Factor, RL=Repo	orting Limit, ND=Not Detected or	<rl< td=""><td></td><td></td><td></td><td>Pag</td><td>ge 5 of 10</td></rl<>				Pag	ge 5 of 10

Customer Sample ID: NTD @ ORD Collect Date/Time: 9/20/2017 14:00

WETLAB Sample ID: 1709600-008 **Receive Date:** 9/20/2017 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Total Phosphorous as P	SM 4500-P E	0.18	mg/L	1	0.010	9/25/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	6	mg/L	1	1	9/26/2017	NV00925
Total Nitrogen	Calc.	2.0	mg/L	1	0.30	9/25/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	630	mg/L	1	10	9/26/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.3	mg/L	5	0.050	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND D	mg/L	5	0.050	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.72	mg/L	0.5	0.20	9/25/2017	NV00925

 Customer Sample ID:
 YD @ SBC
 Collect Date/Time:
 9/20/2017
 14:45

 WETLAB Sample ID:
 1709600-009
 Receive Date:
 9/20/2017
 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.015	mg/L	1	0.010	9/21/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.13	mg/L	1	0.010	9/25/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	81	mg/L	1	1.0	9/26/2017	NV00925
Total Nitrogen	Calc.	1.7	mg/L	1	0.22	9/25/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	250	mg/L	1	10	9/26/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.53	mg/L	1	0.010	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.2	mg/L	0.5	0.20	9/25/2017	NV00925

 Customer Sample ID:
 BS @ SBC
 Collect Date/Time:
 9/20/2017
 16:05

 WETLAB Sample ID:
 1709600-010
 Receive Date:
 9/20/2017
 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.094	mg/L	1	0.010	9/21/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.15	mg/L	1	0.010	9/25/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	23	mg/L	1	1.0	9/26/2017	NV00925
Total Nitrogen	Calc.	1.0	mg/L	1	0.22	9/25/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	210	mg/L	1	10	9/26/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.59	mg/L	1	0.010	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.42	mg/L	0.5	0.20	9/25/2017	NV00925

 $DF \hbox{=-}Dilution\ Factor,\ RL \hbox{=-}Reporting\ Limit,\ ND \hbox{=-}Not\ Detected\ or\ <} RL$

Page 6 of 10

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

Customer Sample ID: SBC @ CWW (1)

WETLAB Sample ID: 1709600-011 **Collect Date/Time:** 9/19/2017 12:00

Receive Date: 9/20/2017 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.14	mg/L	1	0.010	9/21/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.19	mg/L	1	0.010	9/25/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	27	mg/L	1	1.0	9/26/2017	NV00925
Total Nitrogen	Calc.	0.87	mg/L	1	0.22	9/25/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	280	mg/L	1	10	9/26/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.26	mg/L	1	0.010	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.62	mg/L	0.5	0.20	9/25/2017	NV00925

Customer Sample ID: SBC @ CWW(2)

1709600-012 **WETLAB Sample ID:**

Collect Date/Time: 9/19/2017 18:00

Receive Date: 9/20/2017 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.13	mg/L	1	0.010	9/21/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.19	mg/L	1	0.010	9/26/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	37	mg/L	1	1.0	9/26/2017	NV00925
Total Nitrogen	Calc.	0.94	mg/L	1	0.22	9/25/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	260	mg/L	1	10	9/26/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.26	mg/L	1	0.010	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.68	mg/L	0.5	0.20	9/25/2017	NV00925

SBC @ CWW(3) **Customer Sample ID:**

WETLAB Sample ID: 1709600-013 **Collect Date/Time:** 9/20/2017 00:00 **Receive Date:** 9/20/2017 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.13	mg/L	1	0.010	9/21/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.18	mg/L	1	0.010	9/26/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	43	mg/L	1	1.0	9/26/2017	NV00925
Total Nitrogen	Calc.	0.90	mg/L	1	0.22	9/29/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	280	mg/L	1	10	9/26/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.26	mg/L	1	0.010	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.64 M	mg/L	0.5	0.20	9/29/2017	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 7 of 10

WETLAB Sample ID:

Customer Sample ID: SBC @ CWW(4)

1709600-014

Collect Date/Time: 9/20/2017 06:00

Receive Date: 9/20/2017 17:30

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.14	mg/L	1	0.010	9/21/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.23	mg/L	1	0.010	9/26/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	37	mg/L	1	1.0	9/26/2017	NV00925
Total Nitrogen	Calc.	0.95	mg/L	1	0.22	9/29/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	310	mg/L	1	10	9/26/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.25	mg/L	1	0.010	9/21/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	9/21/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.70	mg/L	0.5	0.20	9/29/2017	NV00925

QCType

Parameter

QCBatchID

Western Environmental Testing Laboratory QC Report

Result

Units

% Rec

Actual

Method

QC17090927 QC17090935 QC17090990 QC17091061 QC17091116 QC17091116 QC17091117 QC17091117 QC17091198	LCS 1 LCS 2 LCS 1 LCS 2 LCS 1 LCS 2 LCS 1 LCS 2	Total Phosphorous as P Total Suspended Solids (TSS) Total Suspended Solids (TSS) Total Dissolved Solids (TDS) Total Kjeldahl Nitrogen	SM 4500-P E SM 2540D SM 2540D SM 2540C SM 2540C SM 2540C SM 2540C EPA 351.2	198 199 139 145 139 145 0.970	200 200 150 150 150 150 150	99 99 93 97 93 97 97	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	
QC17090935 QC17090990 QC17091061 QC17091061 QC17091116 QC17091116 QC17091117	LCS 1 LCS 2 LCS 1 LCS 2 LCS 1 LCS 2	Total Suspended Solids (TSS) Total Suspended Solids (TSS) Total Dissolved Solids (TDS) Total Dissolved Solids (TDS) Total Dissolved Solids (TDS)	SM 2540D SM 2540D SM 2540C SM 2540C SM 2540C	198 199 139 145 139	200 200 150 150 150	99 99 93 97 93	mg/L mg/L mg/L mg/L mg/L	
QC17090935 QC17090990 QC17091061 QC17091061 QC17091116 QC17091116	LCS 1 LCS 2 LCS 1 LCS 2	Total Suspended Solids (TSS) Total Suspended Solids (TSS) Total Dissolved Solids (TDS) Total Dissolved Solids (TDS)	SM 2540D SM 2540D SM 2540C SM 2540C	198 199 139 145	200 200 150 150	99 99 93 97	mg/L mg/L mg/L mg/L	
QC17090935 QC17090990 QC17091061 QC17091061 QC17091116	LCS 1 LCS 2 LCS 1	Total Suspended Solids (TSS) Total Suspended Solids (TSS) Total Dissolved Solids (TDS)	SM 2540D SM 2540D SM 2540C	198 199 139	200 200 150	99 99 93	mg/L mg/L mg/L	
QC17090935 QC17090990 QC17091061 QC17091061	LCS 1 LCS 2	Total Suspended Solids (TSS) Total Suspended Solids (TSS)	SM 2540D SM 2540D	198 199	200 200	99 99	mg/L mg/L	
QC17090935 QC17090990 QC17091061	LCS 1	Total Suspended Solids (TSS)	SM 2540D	198	200	99	mg/L	
QC17090935 QC17090990		=					•	
QC17090935	LCS 1	Total Phosphorous as P	SM 4500-P E	0.242	0.230	<i>)</i>	mg/L	
			G1 5 4500 D D	0.242	0.250	97	mg/L	
QC17090927	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	0.975	1.00		mg/L	
004700007	LCS 2	Total Suspended Solids (TSS)	SM 2540D	200	200	100	mg/L	
QC17090927	LCS 1	Total Suspended Solids (TSS)	SM 2540D	200	200	100	mg/L	
QC17090920	LCS 1	Total Phosphorous as P	SM 4500-P E	0.256	0.250	102	mg/L	
QC17090864	LCS 1	Total Phosphorous as P	SM 4500-P E	0.270	0.250	108	mg/L	
		Nitrite Nitrogen	EPA 300.0	0.482	0.500	96	mg/L	
QC17090856	LCS 1	Nitrate Nitrogen	EPA 300.0	0.485	0.500	97	mg/L	
		Nitrite Nitrogen	EPA 300.0	0.482	0.500	96	mg/L	
QC17090854	LCS 1	Nitrate Nitrogen	EPA 300.0	0.485	0.500	97	mg/L	
QC17090800	LCS 1	Orthophosphate, as P	SM 4500-P E	0.256	0.250	102	mg/L	
QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units	
QC17091198	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L	
QC17091117	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L	
QC17091116	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L	
QC17091061	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L	
QC17090990	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L	
QC17090935	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L	
QC17090927	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L	
QC17090920	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L	
QC17090864	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L	
		Nitrite Nitrogen	EPA 300.0	ND			mg/L	
QC17090856	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L	
		Nitrite Nitrogen	EPA 300.0	ND			mg/L	
QC17090854	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L	
		Escherichia Coli (MPN)	SM 9223B (Qu	ND			MPN/100ml	
QC17090841	Blank 1	Total Coliform (MPN)	SM 9223B (Qu	ND			MPN/100ml	
		Escherichia Coli (MPN)	SM 9223B (Qu	ND			MPN/100ml	
	Blank 1	Total Coliform (MPN)	SM 9223B (Qu	ND			MPN/100ml	
QC17090800 QC17090826	Blank 1	Orthophosphate, as P	SM 4500-P E	ND			mg/L	

QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC17090927	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1709488-024	46.0	46.5	mg/L	1 %
QC17090927	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1709507-007	2.00	2.67	mg/L	29 %
QC17091061	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1709635-004	ND	ND	mg/L	<1%
QC17091061	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1709600-014	37.0	36.5	mg/L	1 %
QC17091116	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1709685-002	289	286	mg/L	1 %
QC17091116	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1709622-001	754	769	mg/L	2 %

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 9 of 10

QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC17091117	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1709623-001	692	689	mg/L	<1%
QC17091117	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1709678-001	274	277	mg/L	1 %

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC17090800 MS 1	Orthophosphate, as P	SM 4500-P E	1709600-001	0.038		0.273	0.288	0.25	mg/L	94	100	5
QC17090800 MS 2	Orthophosphate, as P	SM 4500-P E	1709600-011	0.138		0.376	0.386	0.25	mg/L	95	99	3
QC17090854 MS 1	Nitrate Nitrogen	EPA 300.0	1709594-003	0.833		1.39	1.40	0.5	mg/L	112	113	<1
	Nitrite Nitrogen	EPA 300.0	1709594-003	ND		0.134	0.133	0.125	mg/L	105	103	<1
QC17090854 MS 2	Nitrate Nitrogen	EPA 300.0	1709600-005	0.088		0.627	0.645	0.5	mg/L	108	111	3
	Nitrite Nitrogen	EPA 300.0	1709600-005	ND		0.118	0.120	0.125	mg/L	94	96	2
QC17090856 MS 1	Nitrate Nitrogen	EPA 300.0	1709601-001	0.321		0.877	0.891	0.5	mg/L	111	114	2
	Nitrite Nitrogen	EPA 300.0	1709601-001	ND		0.112	0.116	0.125	mg/L	90	92	4
QC17090856 MS 2	Nitrate Nitrogen	EPA 300.0	1709601-010	0.051		2.67	2.67	0.5	mg/L	105	105	<1
	Nitrite Nitrogen	EPA 300.0	1709601-010	ND	D	0.560	0.556	0.125	mg/L	90	89	<1
QC17090864 MS 1	Total Phosphorous as P	SM 4500-P E	1709543-001	1.99	SC	1.77	1.75	0.25	mg/L	NC	NC	NC
QC17090864 MS 2	Total Phosphorous as P	SM 4500-P E	1709595-004	0.096		0.369	0.355	0.25	mg/L	109	104	4
QC17090920 MS 1	Total Phosphorous as P	SM 4500-P E	1709600-002	0.387		0.662	0.665	0.25	mg/L	110	111	<1
QC17090920 MS 2	Total Phosphorous as P	SM 4500-P E	1709600-011	0.193		0.417	0.436	0.25	mg/L	90	97	4
QC17090935 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1709539-011	0.204	M	0.635	0.625	0.5	mg/L	NC	NC	NC
QC17090935 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1709600-009	1.21		1.68	1.80	0.5	mg/L	94	119	7
QC17090990 MS 1	Total Phosphorous as P	SM 4500-P E	1709600-012	0.190		0.400	0.416	0.25	mg/L	84	91	4
QC17090990 MS 2	Total Phosphorous as P	SM 4500-P E	1709617-003	0.138		0.364	0.364	0.25	mg/L	90	90	<1
QC17091198 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1709600-013	0.640	M	1.26	1.22	0.5	mg/L	NC	NC	NC
QC17091198 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1709601-009	0.895		1.38	1.34	0.5	mg/L	98	88	3

										_				$\overline{}$
WETLAB	WETLAB									1	109	160	$\underline{\mathcal{O}}$	
WESTERN ENVIRONMENTAL	lizing in Soil, Hazaı	rdous Wa	ste and V	Vater	Anal	lysis.		Report Due Da		10) / i	<u> </u>	17	
475 E. Greg Street #119 Sparl	ks, Nevada 89431						ŀ	Due Da	1				· /	\dashv
tel (775) 355-0202 I fex (775) 3 1084 Lampille Hwy I Elko, Nevad						_		Page _	<u> </u>	_ of _				
tel (775) 777-9933 I fax (775) 7		VETLabora	tory.com			Turnaround Time Regularements								
Client Balance Hudra	ologics					Standard							.	
Address 17020 DONNET	Pass K	2	buite	B	1	48 Hour* 24 Hour* *Surcharges Will Apply								
City, State & Zip Truckee, (A 9616					*	Samples Collected From Report Res Which State?				its Via			
Contact Brian Hastin							NV_	CA_ ther			Fax		il Only	
Phone 530 - 550 - 9776 Collector's Name BT							Compli Yes	ince Moi	ni toring? No	-	PDi Other:			_
Fax	PWS/Project Nan	. 1	13.	. ^	-	Rep		Regulato	ry Agend	y?	Stai	dard QC F	tequired'	
							tes		NO		168		NO	\neg
P.O. Number	PWS/Project Nun			<u> </u>	NO.			Ar	nalyse	s Re	eque	sted		\neg
Email 6/45+1 NV5 (2) 640 Billing Address (If different	wellydn		<u>~~</u>	S	OF	7	\neg	\exists	TĪ		ĖΤ	\overline{T}	T	\neg
Company Balance Hydrol		11035)	·	M	c			- [1-1	- 1	1	- 1		-//
	ax Guite	101		P	0		-		II	- 1		11	'	-//
City, State & Zip Berkeley C	A 900 94	1710		Ŀ	N		-	1 1		- [11		Ш
Contact Rachel Boitance	>			E	TA	-	Ja	121		- [11	-	71
Phone <u>510.704.1000</u>				Т	î	-	4 =	14	- [-	11	-	II
Fax	1			Y	N	1 6	1 3	3	J. 12	1.1	N-	# 1	-	$I \mid I$
Email rootand onlar	vehydro	, cow	<u>`</u>	E	E R	61	10	뀕-	7,7	12	4. 9	1	1.	
SAMPLE ID/LOCATION		DATE	TIME		s		7	9.	71	15	19		\perp	Spl. No.
ALQTR		9/20/17	8:56	5W	3	X	K	$\mathcal{X} \mathcal{X}$	X	X	X			\sqcup
CC@CB		9/20/17	10:15	4	Z	X	X	XX	<u>1 X</u>	X			$\downarrow \downarrow \downarrow$	2
SBC @ RHR		9/20/17	10:55	Ц	3	x	X	X	K	X	_			3
WCQOVW	<u>4</u>	9/20/17	11:12	\Box	3	X	X	X L	X	۴	X			4
TCO SMP		9/20/1	12:00		2	X	시	8	X	X				5
SBL@ NAR		9/20/17	12:33	Ш	2	x	X	<u> </u>	<u>×</u>	X				6
NTO @ BFO		1/20/17	13:25	\coprod	2	4	<u>X</u>	X	X	X				7
NTO ORA		9/20/17	14:00		2	¥	X	X	X	X				8
YD @ SBL		9/20/17	14:45	(2	X	X	X	X	X	1	1709	-6	9
B5 @ 5BC		9/20/17	16:05	1	2	X	M	X	X	X		-600	14	10
		1					\Box					- <u>000</u>	T	
Instructions/Comments/Special Requirements:		•	·		ا	·			-	1.	-			\neg
- Section of the sect				-					_					\neg
Sample Matrix/ Type Key** DW = Drinking Water WW = V	Wastewater SW = Surface	e Water MV	= Monitoring	Weil \$	SD = S	olid/Slu	dge SO) = Soil I	HW = Ha	zardo	us Wast	OTHER:		
SAMPLE RECEIPT	DATE TIME	Sa	mples Re	ling	uish	ed/B	y		Sai	mple	s Re	ceived	Ву	
Temperature <u>6.0</u> °c	7:10 5:30	1			2	0		1		11				$\ \ \ \ \ \ \ \ \ \ \ \ \ $
Custody Seals Intact? Y N None				~	-1		Č	 	U	- y				\neg
	Number of Containers													

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636).

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

WETLAB'S Standard Terms and Conditions apply unless written agreements specify otherwise. Payment terms are Net 30.

A METI AD							Lah	Num	her	70	9	loc	1	
WETLAB MESTERN ENVIRONMENTAL								ort	DEI (<u> </u>	1	<u> </u>		_
	lizing in Soil, Hazai	rdous Wa	ste and V	/ater	Ana	lysis.		Date	•					
475 E. Greg Street #119 Sparl	•			•					<u>)</u>	($\overline{}$			
1084 Lamoille Hwy I Elko, Nevad							Page of							
tel (775) 777-9933 I fex (775) 7	777-9933 I www.\	VETL abora	tory.com								lrement	<u>.</u>	-	-
Client	-					5-0	ay*	Sta	ndard_		<u>, </u>			
							Hour*				our*			
Address						- 000	nice/Cal			rges Will A		# congress of		
City, State & Zip							ples Col Which V			1	Report			
Contact							Other				ax DF	Mail (EDD	Only	
Phone	Collector's Name)					Compliance Monitoring? Yes No				Br:			_
Fax	PWS/Project Nar	ne					Report to Regulatory Agency?				landard es		vo Vo	?
P.O. Number														
Email				-	NO.			Ana	lyse	s Requ	ested			1
Billing Address (if different	than Client Add	dress)		S	OF		ΓI			-1	I = I	\neg		
Company				M	С		1 1		- 1	-	I I	- [- [
Address				Р	0						' 1	- [
City, State & Zip			,	<u> </u>	N		- 1	-	-	11		- [1	
Contact				E	Ţ	11—1	\ l0	\mathcal{A}	-	11	-	-		
Phone				Т	A	114	- ال	7	1	1 1		1	1	
Fax				Y	N	11 7	」	gσ	٦. ٢		- [1		
Email				P	E	-4 -	47	y L	K Y		- [1	l	
SAMPLE ID/LOCATION		DATE	TIME	E	R	MAH	36	d L	1 F	1	1	$ \ $		Spl.
SBL @ CWW(1)		9/14/12	12:00	4 W	1	×v	v	V	X		T	H	\neg	No.
5BC @ CWW (Z)		a'i	16:00		1	~ ~	X	V	×		T			12
484 (1) (1) (2)		61 17	0:00	H^-	H		1/2		<u> </u>		\dagger		\neg	12
38C(0 CWW (3)		hd/ 1/		H	Н		1.		-		+	$\vdash \vdash$	\dashv	• _
5BC (W CWW (4)		1/20/17	6:00	<u> </u>	<u> ' </u>	XX	<u>. X</u>	X	Д		₩.			14
							T							
										- 17 ₀ -600	9 -	:		
		<u> </u>			-		+	 		-/0-	O	′ →	\dashv	_
									!	0111	1%			
			:								14	i		
												П		
						\vdash	+		-		+			
							Ц				J			
Instructions/Comments/Special Requirements:														
Sample Matrix/ Type Key** DW = Drinking Water WW = V	Vastewater SW = Surfac	ce Water MW	= Monitoring	Well \$	SD = S	olid/Sludge	SO = S	oil HV	/ = Haz	ardous Wa	ste OTH	ER:		_
SAMPLE RECEIPT	DATE TIME	Sar	nples Re	linq	uigh	ed By			San	iples R	eceiv	ed B	y	
Temperature°C				4										
Custody Seals Intact? Y N None				0		0	\top							
Number of Containers														
WETLAB'S Standard Terms and Con	ditions apply un	less writ	ten agre	eme	nts s	pecify	other	wise	. Pay	ment t	erms	are N	let 3	0.

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636).

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

1711571

Specializing in Soil, Hazardous Waste and Water Analysis

OrderID:

12/1/2017

Balance Hydrologics 800 Baucroft Ave. Suite 101 Berkeley, CA 94710

Attn: Brian Hastings

Dear: Brian Hastings

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 11/16/2017. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Jennifer Delaney QA Specialist

EPA LAB ID: NV00926

LAS VEGAS

Western Environmental Testing Laboratory Report Comments

Balance Hydrologics - 1711571

Specific Report Comments

The result for Orthophosphate on sample 1711571-004 is higher than expected, especially when compared to the result for Total Phosphorus. It is thought that particulate matter contained in the sample interfered with the Orthophosphate result. The particulate matter interferes by deflecting the light used in the spectrophotometric method. The particulate matter did not interfere with the Total Phosphorus analysis since that procedure includes an acid digestion process.

Report Legend

В	 Blank contamination; Analyte detected above the method reporting limit in an associated blank
D	 Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT	 Sample analyzed beyond the accepted holding time
J	 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
M	 The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance criteria due to probable matrix interference. The reported result should be considered an estimate.
N	 There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC	 Not calculated due to matrix interference
QD	 The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL	 The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
S	 Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC	 Spike recovery not calculated. Sample concentration >4X the spike amount; therefore, the spike could not be adequately recovered
U	 The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B:

A result of zero (0) indicates absence for both coliform and Escherichia coli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolved Oxygen, Sulfite.

Western Environmental Testing Laboratory Analytical Report

Balance Hydrologics Date Printed: 12/1/2017 800 Baucroft Ave. Suite 101 OrderID: 1711571

Berkeley, CA 94710
Attn: Brian Hastings

Phone: (510-704-1000 **Fax: PO\Project:** *City or Reno / 213136*

 Customer Sample ID:
 TC @ SMP
 Collect Date/Time:
 11/16/2017
 00:05

 WETLAB Sample ID:
 1711571-001
 Receive Date:
 11/16/2017
 13:25

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.15	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.21 M	mg/L	1	0.010	11/17/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	80	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	0.95	mg/L	1	0.22	11/28/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	62	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.023	mg/L	1	0.010	11/16/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	11/16/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.92	mg/L	0.5	0.20	11/28/2017	NV00925

Customer Sample ID: WC @ OVW **Collect Date/Time:** 11/15/2017 23:26 WETLAB Sample ID: **Receive Date:** 11/16/2017 13:25 1711571-002

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.13	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.13	mg/L	1	0.010	11/17/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	260	mg/L	1	1.0	11/17/2017	NV00925
Total Nitrogen	Calc.	1.6	mg/L	1	0.22	11/28/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	45	mg/L	1	10	11/17/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.094	mg/L	1	0.010	11/16/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.011	mg/L	1	0.010	11/16/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.5	mg/L	0.5	0.20	11/28/2017	NV00925

Customer Sample ID: AC @ TR **Collect Date/Time:** 11/15/2017 21:20 WETLAB Sample ID: **Receive Date:** 11/16/2017 13:25 1711571-003

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry						<u> </u>	
Orthophosphate, as P	SM 4500-P E	0.099	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.20	mg/L	1	0.010	11/17/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	18	mg/L	1	1.0	11/17/2017	NV00925
Total Nitrogen	Calc.	1.0	mg/L	1	0.22	11/28/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	330	mg/L	1	10	11/17/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.15	mg/L	1	0.010	11/16/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	11/16/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.88	mg/L	0.5	0.20	11/28/2017	NV00925

Customer Sample ID: CC @ CB **Collect Date/Time:** 11/15/2017 21:55 WETLAB Sample ID: **Receive Date:** 11/16/2017 13:25 1711571-004

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID	
General Chemistry								
Orthophosphate, as P	SM 4500-P E	0.39	mg/L	1	0.010	11/17/2017	NV00925	
Total Phosphorous as P	SM 4500-P E	0.26	mg/L	1	0.010	11/17/2017	NV00925	
Total Suspended Solids (TSS)	SM 2540D	180	mg/L	1	1.0	11/17/2017	NV00925	
Total Nitrogen	Calc.	2.8	mg/L	1	0.30	11/28/2017	NV00925	
Total Dissolved Solids (TDS)	SM 2540C	800	mg/L	1	10	11/17/2017	NV00925	
Anions by Ion Chromatography								
Nitrate Nitrogen	EPA 300.0	0.81	mg/L	5	0.050	11/16/2017	NV00925	
Nitrite Nitrogen	EPA 300.0	ND D	mg/L	5	0.050	11/16/2017	NV00925	
Flow Injection Analyses								
Total Kjeldahl Nitrogen	EPA 351.2	2.0	mg/L	0.5	0.20	11/28/2017	NV00925	

Customer Sample ID: SBC @ RHR **Collect Date/Time:** 11/15/2017 23:05 WETLAB Sample ID: **Receive Date:** 11/16/2017 13:25 1711571-005

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.094	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.16	mg/L	1	0.010	11/21/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	140	mg/L	1	1.0	11/17/2017	NV00925
Total Nitrogen	Calc.	1.8	mg/L	1	0.22	11/28/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	220	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.087	mg/L	1	0.010	11/16/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	11/16/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.7	mg/L	0.5	0.20	11/28/2017	NV00925

Customer Sample ID: SBC @ NAR **Collect Date/Time:** 11/16/2017 00:36 **WETLAB Sample ID: Receive Date:** 11/16/2017 13:25 1711571-006

Analyte	Method	Results	S	Units	DF	RL	Analyzed	LabID
General Chemistry								
Orthophosphate, as P	SM 4500-P E	0.17		mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.27		mg/L	1	0.010	11/21/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	490		mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	1.5		mg/L	1	0.30	11/28/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	410		mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography								
Nitrate Nitrogen	EPA 300.0	0.064		mg/L	5	0.050	11/16/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND	D	mg/L	5	0.050	11/16/2017	NV00925
Flow Injection Analyses								
Total Kjeldahl Nitrogen	EPA 351.2	1.5		mg/L	0.5	0.20	11/28/2017	NV00925

Customer Sample ID: NTD @ ORD **Collect Date/Time:** 11/16/2017 01:10 **WETLAB Sample ID: Receive Date:** 11/16/2017 13:25 1711571-007

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID	
General Chemistry								
Orthophosphate, as P	SM 4500-P E	0.22	mg/L	1	0.010	11/17/2017	NV00925	
Total Phosphorous as P	SM 4500-P E	0.28	mg/L	1	0.010	11/21/2017	NV00925	
Total Suspended Solids (TSS)	SM 2540D	47	mg/L	1	1.0	11/21/2017	NV00925	
Total Nitrogen	Calc.	3.7	mg/L	1	0.30	11/28/2017	NV00925	
Total Dissolved Solids (TDS)	SM 2540C	830	mg/L	1	10	11/21/2017	NV00925	
Anions by Ion Chromatography								
Nitrate Nitrogen	EPA 300.0	1.6	mg/L	5	0.050	11/16/2017	NV00925	
Nitrite Nitrogen	EPA 300.0	ND D	mg/L	5	0.050	11/16/2017	NV00925	
Flow Injection Analyses								
Total Kjeldahl Nitrogen	EPA 351.2	2.0	mg/L	0.5	0.20	11/28/2017	NV00925	

Customer Sample ID: BS @ SBC **Collect Date/Time:** 11/16/2017 12:03 **WETLAB Sample ID: Receive Date:** 11/16/2017 13:25 1711571-008

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.14	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.14	mg/L	1	0.010	11/21/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	74	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	1.7	mg/L	1	0.22	11/28/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	89	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.50	mg/L	1	0.010	11/16/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.022	mg/L	1	0.010	11/16/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.2	mg/L	0.5	0.20	11/28/2017	NV00925

Western Environmental Testing Laboratory QC Report

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units	
QC17110726	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L	
		Nitrite Nitrogen	EPA 300.0	ND			mg/L	
QC17110738	Blank 1	Total Phosphorous as P	SM 4500-P E	ND ND			mg/L	
QC17110744	Blank 1	Orthophosphate, as P	SM 4500-P E	ND ND			mg/L	
QC17110744	Blank 2	Orthophosphate, as P	SM 4500-P E	ND ND			mg/L	
QC17110772	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L	
QC17110774	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L	
QC17110823	Blank 1	Total Phosphorous as P	SM 4500-P E	ND ND			mg/L	
QC17110889	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L	
QC17110966	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L	
QC17111018	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L	
QC17111028	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L	
QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units	
QC17110726	LCS 1	Nitrate Nitrogen	EPA 300.0	0.478	0.500	96	mg/L	
		Nitrite Nitrogen	EPA 300.0	0.456	0.500	91	mg/L	
QC17110738	LCS 1	Total Phosphorous as P	SM 4500-P E	0.228	0.250	91	mg/L	
QC17110744	LCS 1	Orthophosphate, as P	SM 4500-P E	0.244	0.250	97	mg/L	
QC17110744	LCS 2	Orthophosphate, as P	SM 4500-P E	0.244	0.250	97	mg/L	
QC17110772	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	161	150	107	mg/L	
QC17110772	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	159	150	106	mg/L	
QC17110774	LCS 1	Total Suspended Solids (TSS)	SM 2540D	199	200	99	mg/L	
QC17110774	LCS 2	Total Suspended Solids (TSS)	SM 2540D	199	200	99	mg/L	
QC17110823	LCS 1	Total Phosphorous as P	SM 4500-P E	0.241	0.250	96	mg/L	
QC17110889	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	152	150	101	mg/L	
QC17110889	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	153	150	102	mg/L	
QC17110966	LCS 1	Total Suspended Solids (TSS)	SM 2540D	198	200	99	mg/L	
QC17110966	LCS 2	Total Suspended Solids (TSS)	SM 2540D	199	200	99	mg/L	
QC17111018	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	139	150	93	mg/L	
QC17111018	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	142	150	95	mg/L	
QC17111028	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	1.02	1.00	102	mg/L	
QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC17110772	Duplicate	1 Total Dissolved Solids (TDS)	SM 2540C	1711517-013	520	522	mg/L	<1%
QC17110772	Duplicate	2 Total Dissolved Solids (TDS)	SM 2540C	1711530-001	363	356	mg/L	2 %
QC17110774	Duplicate	1 Total Suspended Solids (TSS)	SM 2540D	1711458-001	106	108	mg/L	2 %
QC17110774	Duplicate	2 Total Suspended Solids (TSS)	SM 2540D	1711530-003	5.00	4.67	mg/L	7 %
QC17110889	Duplicate	1 Total Dissolved Solids (TDS)	SM 2540C	1711673-001	366	375	mg/L	2 %
QC17110966	Duplicate	1 Total Suspended Solids (TSS)	SM 2540D	1711571-001	80.0	78.0	mg/L	3 %
QC17110966	Duplicate	2 Total Suspended Solids (TSS)	SM 2540D	1711588-001	1.67	1.67	mg/L	<1%
QC17111018	Duplicate	1 Total Dissolved Solids (TDS)	SM 2540C	1711572-003	175	180	mg/L	3 %
QC17111018	Duplicate	2 Total Dissolved Solids (TDS)	SM 2540C	1711592-001	362	369	mg/L	2 %
QCBatchID (QCType Pa	arameter Mo	Spike ethod Samp	•	MS Result	MSD Result	Spike Value Units	MS MSD RPD %Rec %Rec %

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 11 of 12

Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC17110726 MS 1	Nitrate Nitrogen	EPA 300.0	1711496-004	ND		0.476	0.494	0.5	mg/L	94	97	4
	Nitrite Nitrogen	EPA 300.0	1711496-004	ND		0.115	0.119	0.125	mg/L	92	95	3
QC17110726 MS 2	Nitrate Nitrogen	EPA 300.0	1711571-008	0.496		1.06	1.08	0.5	mg/L	113	117	2
	Nitrite Nitrogen	EPA 300.0	1711571-008	0.022		0.136	0.143	0.125	mg/L	92	97	5
QC17110738 MS 1	Total Phosphorous as P	SM 4500-P E	1711527-001	0.478		0.699	0.598	0.25	mg/L	88	48	16
QC17110738 MS 2	Total Phosphorous as P	SM 4500-P E	1711571-001	0.208	M	0.318	0.266	0.25	mg/L	NC	NC	NC
QC17110744 MS 1	Orthophosphate, as P	SM 4500-P E	1711571-001	0.150		0.387	0.390	0.25	mg/L	95	96	<1
QC17110744 MS 2	Orthophosphate, as P	SM 4500-P E	1711622-002	ND		0.235	0.239	0.25	mg/L	90	92	2
QC17110744 MS 3	Orthophosphate, as P	SM 4500-P E	1711622-005	0.041		0.273	0.274	0.25	mg/L	93	93	<1
QC17110823 MS 1	Total Phosphorous as P	SM 4500-P E	1711586-001	0.021		0.256	0.249	0.25	mg/L	94	91	3
QC17110823 MS 2	Total Phosphorous as P	SM 4500-P E	1711586-003	0.048		0.281	0.276	0.25	mg/L	93	91	2
QC17111028 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1711622-001	ND		0.675	0.595	0.5	mg/L	104	88	13
QC17111028 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1711571-006	1.48		1.98	1.92	0.5	mg/L	99	89	3

475 E. Greg Street #119 I Spark tel (775) 355-0202 I fax (7 1084 Lamoille Highway I Elko, tel (775) 777-9933 I fax (7 3230 Polaris Ave., Suite 4 I Las V	775) 355-0817 Nevada 89801 775) 777-9933 egas, Nevada 89102	www.WETLab			lysis.	Sp Elk LV Re Du	arks Control Control port e Date	Control #			115	7]		
tel (702) 475-8899 I fax (7	(02) 776-6152			- 3		Page of								
Client Balance Hydra	ologics		100	-			100000	ndard .		uirements				
Address 12020 Donner	254 Rd	A.			5 Day	(25%) _				ur* (50%) _				
City, State & Zip Truckee CA 96/62							48 Hour* (100%) 24 Hour* (200%) *Surcharges Will Apply							
Contact Brian Hasting					Sa	mples Co	The second	From	I ges viii		Results Vi	a		
Phone 530. 550. 9776	Collector's Name	BT				NV	CA_							
		-1.1	Lac	Zen	Compliance Monitoring? PDF EDD						EDD			
							Report to Regulatory Agency? Standard QC Required?							
P.O. Number	PWS/Project Numb			NO.)	es		lvse		Yes uested	No			
	nce hydro		S	OF.	T	T		I	T	1 1	T			
Company Balance Hydro Address 300 Bancroff Wa City, State & Zip Berkeley CA	olowics.		— M — P — L	C O N T A										
Contact Kachel Boitano	> '''		— т	i	12	2	1							
1	ax		_ Y	N		3-	9	y S	12					
	ncehydro	, com	P	R	13	#	#1-	1/2	19			Snl		
SAMPLE ID/LOCATION	DATE	TIME TY	RES E		17	76	>	1	17			Spl. No.		
TUESMP	11/16/17	00:05 1,	2 99	2	X.	XX		X	X			1		
WC POVW	11/15/17	23:26 1		1	47	X		X	X			2		
ACQ TR	11/15/17 2	21:20			x-	(*	X	X	X			3		
CL @ CB	11/15/17	21:55			X	X	X	X	X			4		
SBC @ ZHR	11/15/17	23:05			X.	XX		X	X			5		
SBC @ NAR	11/16/17				X	XX		X	X			4		
NTD @ ORD	11/16/17			\top	VS	C X		,	X		79	7		
BS @ 5BC	11/16/17				X	XX			X			8		
D) E JAC		1210		<u> </u>				_		+				
				_						+	2			
Instructions/Comments/Special Requirements:									1	111	L _			
										- 1	8.	-		
Sample Matrix Key** DW = Drinking Water WW = V	Vastewater SW = Surface	Water MW = Mor	nitoring Well	SD = S	olid/Sludg	e SO = 3	Soil HV	V = Ha	zardous V	511				
*SAMPLE PRESERVATIVES: 1=Unpres	served 2=H2SO4	3=NaOH 4=	HCI 5=H	NO3	6=Na	2S2O3	7=Z	nOA	c+NaC	H 8=H	CI/VOA	Vial		
Temp Custody Seal # of Containers	DATE TIME	Sample	s Relino	uish	ed By	>		San	nples	Receive	ed By			
1.5°C Y N (NOME (6 11)	16/17 13:25	-		1	2010		/		1	10				
°C Y N None			15		1				L	7	-			
°C Y N None							-							
	1 -				********									
	1141	***						_				00		
WETLAB'S Standard Terms and Cond												30.		
Client/Collector attests to the validity and author	nticity of this (these) sa	ample(s) and, i	s (are) awa	are tha	t tampe	ring wit	h or int	tentio	nally mis	slabeling	the			

1711632

Specializing in Soil, Hazardous Waste and Water Analysis

OrderID:

12/4/2017

Attn:

Balance Hydrologics 800 Baucroft Ave. Suite 101 Berkeley, CA 94710

Brian Hastings

Dear: Brian Hastings

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 11/17/2017. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Andy Smith QA Manager

Elko, Nevada 89801 tel (775) 777-9933

fax (775) 777-9933

EPA LAB ID: NV00926

LAS VEGAS

Western Environmental Testing Laboratory Report Comments

Balance Hydrologics - 1711632

Specific Report Comments

Due to a laboratory reanalysis requirement the analysis for Nitrate Nitrogen and Nitrite Nitrogen on the submitted samples was performed past the EPA recommended holding time. We apologize for any inconvenience this may have caused.

Report Legend

report Bege	
В	 Blank contamination; Analyte detected above the method reporting limit in an associated blank
D	 Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT	 Sample analyzed beyond the accepted holding time
J	 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
M	 The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance criteria due to probable matrix interference. The reported result should be considered an estimate.
N	 There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC	 Not calculated due to matrix interference
QD	 The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL	 The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
S	 Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC	 Spike recovery not calculated. Sample concentration >4X the spike amount; therefore, the spike could not be adequately recovered
U	 The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B:

A result of zero (0) indicates absence for both coliform and Escherichia coli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolved Oxygen, Sulfite.

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

LAS VEGAS

Western Environmental Testing Laboratory Analytical Report

Balance HydrologicsDate Printed:12/4/2017800 Baucroft Ave. Suite 101OrderID:1711632

Berkeley, CA 94710
Attn: Brian Hastings

Phone: (510-704-1000 **Fax:**

PO\Project: Truckee Meadows / 213136

Customer Sample ID: SDOE 008936 (1) **Collect Date/Time:** 11/15/2017 21:36

 WETLAB Sample ID:
 1711632-001
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Total Phosphorous as P	SM 4500-P E	0.20 M	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	160	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	10	mg/L	1	0.26	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	340	mg/L	1	10	11/20/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	7.9 HT	mg/L	5	0.050	11/27/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND H	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	2.1	mg/L	0.5	0.20	11/30/2017	NV00925

Customer Sample ID: SDOE 008936 (2) **Collect Date/Time:** 11/16/2017 06:48

WETLAB Sample ID: 1711632-002 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Total Phosphorous as P	SM 4500-P E	0.20	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	170	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	1.7	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	48	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.023 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.012 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.7	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 SDOE 008936 (3)
 Collect Date/Time:
 11/16/2017
 08:47

 WETLAB Sample ID:
 1711632-003
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Total Phosphorous as P	SM 4500-P E	0.20	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	140	mg/L	1	1.0	11/21/2017	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 3 of 12

Customer Sample ID: SDOE 008936 (3)

WETLAB Sample ID: 1711632-003 Collect Date/Time: 11/16/2017 08:47

Receive Date: 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Total Nitrogen	Calc.	2.4	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	68	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.26 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.021 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	2.1	mg/L	0.5	0.20	11/30/2017	NV00925

Customer Sample ID: SDOE 008936 (4)

WETLAB Sample ID: 1711632-004 **Collect Date/Time:** 11/16/2017 12:25

Receive Date: 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Analyte	Method	Results	Omis	Dr	KL	Allalyzeu	LauiD
General Chemistry							
Total Phosphorous as P	SM 4500-P E	0.23	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	56	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	1.9	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	130	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.37 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.016 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.5	mg/L	0.5	0.20	11/30/2017	NV00925

Collect Date/Time: 11/16/2017 00:19 **Customer Sample ID:** D-16(1)

WETLAB Sample ID: 1711632-005

Receive Date: 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Total Phosphorous as P	SM 4500-P E	0.34	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	160	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	4.1	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	120	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.023 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	4.1 SC	mg/L	0.5	0.20	11/30/2017	NV00925

Customer Sample ID: D-16 (4) **Collect Date/Time:** 11/16/2017 14:47

WETLAB Sample ID: 1711632-006 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Total Phosphorous as P	SM 4500-P E	0.22	mg/L	1	0.010	11/29/2017	NV00925
DF=Dilution Factor, RL=Reporting	⟨RL				Page	e 4 of 12	

LAS VEGAS

Customer Sample ID: D-16 (4) **Collect Date/Time:** 11/16/2017 14:47

WETLAB Sample ID: 1711632-006 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Total Suspended Solids (TSS)	SM 2540D	72	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	2.4	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	82	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.18 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.054 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	2.2	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 C-24 (1)
 Collect Date/Time:
 11/15/2017
 19:46

 WETLAB Sample ID:
 1711632-007
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Total Phosphorous as P	SM 4500-P E	0.47	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	130	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	2.8	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	87	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.027 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.014 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	2.8	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 C-24 (2)
 Collect Date/Time:
 11/15/2017
 22:30

 WETLAB Sample ID:
 1711632-008
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Total Phosphorous as P	SM 4500-P E	0.17	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	25	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	0.82	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	23	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.056 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.76	mg/L	0.5	0.20	11/30/2017	NV00925

EPA LAB ID: NV00926

Customer Sample ID: C-24 (3) **Collect Date/Time:** 11/16/2017 01:10

WETLAB Sample ID: 1711632-009 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Total Phosphorous as P	SM 4500-P E	0.15	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	19	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	0.67	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	20	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.15 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.52	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 C-24 (4)
 Collect Date/Time:
 11/16/2017
 09:01

 WETLAB Sample ID:
 1711632-010
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Total Phosphorous as P	SM 4500-P E	0.15	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	19	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	1.0	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	18	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.24 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.011 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.78	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 SBC@CWW (1)

 Collect Date/Time:
 11/16/2017 02:15

WETLAB Sample ID: 1711632-011 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.099	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.17 M	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	58	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	1.4	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	370	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.65 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.72	mg/L	0.5	0.20	11/30/2017	NV00925

 $DF \hbox{=-}Dilution\ Factor,\ RL \hbox{=-}Reporting\ Limit,\ ND \hbox{=-}Not\ Detected\ or\ <\!RL$

Page 6 of 12

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

Customer Sample ID: SBC@CWW (2)

WETLAB Sample ID: 1711632-012

Collect Date/Time: 11/16/2017 06:45

Receive Date: 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.18	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.14	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	210	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	2.0	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	290	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.58 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.4	mg/L	0.5	0.20	11/30/2017	NV00925

Customer Sample ID: SBC@CWW (3)

WETLAB Sample ID: 1711632-013

Collect Date/Time: 11/16/2017 17:30

Receive Date: 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.33	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.24	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	780	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	3.3	mg/L	1	0.24	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	340	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.61 HT	mg/L	2	0.020	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.020 HT	mg/L	2	0.020	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	2.6	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 SBC@CWW (4)
 Collect Date/Time:
 11/17/2017
 02:00

 WETLAB Sample ID:
 1711632-014
 Receive Date:
 11/17/2017
 15:45

Results Units DF RL LabID Analyte Method Analyzed **General Chemistry** Orthophosphate, as P SM 4500-P E 0.33 mg/L 1 0.010 11/17/2017 NV00925 Total Phosphorous as P SM 4500-P E 0.21 0.010 mg/L 11/29/2017 NV00925 Total Suspended Solids (TSS) SM 2540D 380 mg/L 1 1.0 11/22/2017 NV00925 Total Nitrogen Calc. 2.4 mg/L 1 0.24 11/30/2017 NV00925 Total Dissolved Solids (TDS) SM 2540C 320 1 10 11/21/2017 NV00925 mg/L **Anions by Ion Chromatography** Nitrate Nitrogen EPA 300.0 0.59 HT 2 0.020 11/23/2017 NV00925 mg/L 0.023 HT 2 0.020 Nitrite Nitrogen EPA 300.0 11/23/2017 NV00925 mg/L **Flow Injection Analyses** Total Kjeldahl Nitrogen EPA 351.2 1.8 0.5 0.20 11/30/2017 NV00925 mg/L

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 7 of 12

Customer Sample ID: NTD@BFD (1)

WETLAB Sample ID: 1711632-015

Collect Date/Time: 11/16/2017 03:00

Receive Date: 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.11	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.15 M	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	48	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	3.1	mg/L	1	0.24	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	790	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	2.0 HT	mg/L	2	0.020	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.045 HT	mg/L	2	0.020	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.1 M	mg/L	0.5	0.20	11/30/2017	NV00925

Customer Sample ID: NTD@BFD (2) Collect Date/Time: 11/16/2017 06:30

WETLAB Sample ID: 1711632-016 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.27	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.21	mg/L	1	0.010	11/30/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	84	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	1.7	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	300	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.13 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.11 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.5	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 NTD@BFD (3)
 Collect Date/Time:
 11/16/2017
 10:00

 WETLAB Sample ID:
 1711632-017
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.30	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.22	mg/L	1	0.010	11/30/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	82	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	1.6	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	140	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.062 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.020 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.5	mg/L	0.5	0.20	11/30/2017	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 8 of 12

 $\textbf{Customer Sample ID:} \qquad \text{NTD@BFD (4)}$

WETLAB Sample ID: 1711632-018

Collect Date/Time: 11/16/2017 14:30

Receive Date: 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.23	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.17	mg/L	1	0.010	11/30/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	37	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	1.5	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	140	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.42 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.014 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.1	mg/L	0.5	0.20	11/30/2017	NV00925

Customer Sample ID: WI@NTD Collect Date/Time: 11/16/2017 08:30

WETLAB Sample ID: 1711632-019 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.27	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.21	mg/L	1	0.010	11/30/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	110	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	1.9	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	290	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.25 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.12 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.6	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 YD@SBC (1)
 Collect Date/Time:
 11/16/2017
 08:50

 WETLAB Sample ID:
 1711632-020
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.18	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.13	mg/L	1	0.010	11/30/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	420	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	2.2	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	180	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.95 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.018 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.2	mg/L	0.5	0.20	11/30/2017	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 9 of 12

Balance Hydrologics - 1711632

Customer Sample ID: YD@SBC(4) Collect Date/Time: 11/17/2017 13:20

WETLAB Sample ID: 1711632-021 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.015	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.11	mg/L	1	0.010	11/30/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	29	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	2.5	mg/L	1	0.24	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	390	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.6 HT	mg/L	2	0.020	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.083 HT	mg/L	2	0.020	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.80	mg/L	0.5	0.20	11/30/2017	NV00925

Western Environmental Testing Laboratory QC Report

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC17110744	Blank 1	Orthophosphate, as P	SM 4500-P E	ND			mg/L
QC17110744	Blank 2	Orthophosphate, as P	SM 4500-P E	ND			mg/L
QC17110886	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC17110957	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L
QC17110960	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L
		Nitrite Nitrogen	EPA 300.0	ND			mg/L
QC17110964	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC17110967	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L
QC17110968	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L
		Nitrite Nitrogen	EPA 300.0	ND			mg/L
QC17111019	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC17111039	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L
QC17111041	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L
QC17111097	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L
QC17111099	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L
QC17120003	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L
QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC17110744	LCS 1	Orthophosphate, as P	SM 4500-P E	0.244	0.250	97	mg/L
QC17110744	LCS 2	Orthophosphate, as P	SM 4500-P E	0.244	0.250	97	mg/L
QC17110886	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	138	150	92	mg/L
QC17110886	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	159	150	106	mg/L
QC17110957	LCS 1	Total Suspended Solids (TSS)	SM 2540D	199	200	99	mg/L
QC17110957	LCS 2	Total Suspended Solids (TSS)	SM 2540D	199	200	99	mg/L
QC17110960	LCS 1	Nitrate Nitrogen	EPA 300.0	0.477	0.500	95	mg/L
		Nitrite Nitrogen	EPA 300.0	0.465	0.500	93	mg/L
QC17110964	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	143	150	95	mg/L
QC17110964	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	142	150	95	mg/L
QC17110967	LCS 1	Total Suspended Solids (TSS)	SM 2540D	200	200	100	mg/L
QC17110967	LCS 2	Total Suspended Solids (TSS)	SM 2540D	198	200	99	mg/L
QC17110968	LCS 1	Nitrate Nitrogen	EPA 300.0	0.470	0.500	94	mg/L
		Nitrite Nitrogen	EPA 300.0	0.457	0.500	91	mg/L
QC17111019	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	137	150	91	mg/L
QC17111019	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	142	150	95	mg/L
QC17111039	LCS 1	Total Phosphorous as P	SM 4500-P E	0.236	0.250	94	mg/L
QC17111041	LCS 1	Total Phosphorous as P	SM 4500-P E	0.257	0.250	103	mg/L
QC17111097	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	1.07	1.00	107	mg/L
QC17111099	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	0.960	1.00	96	mg/L
QC17120003	LCS 1	Total Phosphorous as P	SM 4500-P E	0.224	0.250	90	mg/L
				Dunlicate	Sample	Dunlicate	

				Duplicate	Sample	Duplicate		
QCBatchID	QCType	Parameter	Method	Sample	Result	Result	Units	RPD
QC17110886	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1711565-002	2856	2900	mg/L	2 %
QC17110886	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1711634-002	334	342	mg/L	2 %
QC17110957	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1711617-006	65.6	66.8	mg/L	2 %
QC17110957	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1711632-005	156	152	mg/L	3 %
QC17110964	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1711639-002	236	241	mg/L	2 %

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 11 of 12

QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC17110964	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1711639-003	245	237	mg/L	3 %
QC17110967	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1711632-008	24.7	26.3	mg/L	7 %
QC17110967	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1711632-018	37.0	37.0	mg/L	<1%
QC17111019	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1711632-011	366	357	mg/L	2 %
QC17111019	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1711632-021	390	383	mg/L	2 %

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC17110744 MS 1	Orthophosphate, as P	SM 4500-P E	1711571-001	0.150		0.387	0.390	0.25	mg/L	95	96	<1
QC17110744 MS 2	Orthophosphate, as P	SM 4500-P E	1711622-002	ND		0.235	0.239	0.25	mg/L	90	92	2
QC17110744 MS 3	Orthophosphate, as P	SM 4500-P E	1711622-005	0.041		0.273	0.274	0.25	mg/L	93	93	<1
QC17110960 MS 1	Nitrate Nitrogen	EPA 300.0	1711617-001	0.079	HT	0.618	0.603	0.5	mg/L	108	105	2
	Nitrite Nitrogen	EPA 300.0	1711617-001	ND	HT	0.127	0.129	0.125	mg/L	99	101	2
QC17110960 MS 2	Nitrate Nitrogen	EPA 300.0	1711632-009	0.149	HT	0.666	0.668	0.5	mg/L	103	104	<1
	Nitrite Nitrogen	EPA 300.0	1711632-009	ND	HT	0.127	0.128	0.125	mg/L	97	98	<1
QC17110968 MS 1	Nitrate Nitrogen	EPA 300.0	1711632-015	2.00	HT	3.05	3.03	0.5	mg/L	106	103	<1
	Nitrite Nitrogen	EPA 300.0	1711632-015	0.045	HT	0.257	0.256	0.125	mg/L	85	84	<1
QC17110968 MS 2	Nitrate Nitrogen	EPA 300.0	1711632-021	1.61	HT	2.64	2.62	0.5	mg/L	103	101	<1
	Nitrite Nitrogen	EPA 300.0	1711632-021	0.083	HT	0.314	0.309	0.125	mg/L	93	91	2
QC17111039 MS 1	Total Phosphorous as P	SM 4500-P E	1711632-001	0.201	M	0.302	0.327	0.25	mg/L	NC	NC	NC
QC17111039 MS 2	Total Phosphorous as P	SM 4500-P E	1711632-010	0.147		0.372	0.356	0.25	mg/L	90	84	4
QC17111041 MS 1	Total Phosphorous as P	SM 4500-P E	1711632-011	0.166	M	0.344	0.400	0.25	mg/L	NC	NC	NC
QC17111041 MS 2	Total Phosphorous as P	SM 4500-P E	1711632-015	0.154	M	0.290	0.355	0.25	mg/L	NC	NC	NC
QC17111097 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1711624-007	0.342		0.860	0.810	0.5	mg/L	104	94	6
QC17111097 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1711632-005	4.08	SC	4.86	5.10	0.5	mg/L	NC	NC	NC
QC17111099 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1711632-015	1.10	M	1.50	1.54	0.5	mg/L	NC	NC	NC
QC17111099 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1711694-004	ND	M	0.448	0.460	0.5	mg/L	NC	NC	NC
QC17120003 MS 1	Total Phosphorous as P	SM 4500-P E	1711694-001	0.017		0.241	0.241	0.25	mg/L	90	90	<1
QC17120003 MS 2	Total Phosphorous as P	SM 4500-P E	1711694-006	0.021		0.240	0.250	0.25	mg/L	88	92	4

			-					T							
METI AR									Lab	Numl	per \	711	6:	3	_
WESTERN ENVIRONMENTAL TESTING LABORATORY Specie	alizing in S	oil Hazai	rdous Wa	ste and V	/ater	Anai	vsis.		Repo						
475 E. Greg Street #119 I Spar							ye.e.		Due	Date	51		2		
tel (775) 355-0202 I fax (775)									Page	24	1	of	_		
1084 Lamoille Hwy Elko, Nevac tel (775) 777-9933 fax (775)		I www.\	WETLabora	tory.com						Turnar	ound Ti	ne Requir	rements		
Client Role Atulant	orics	line						E Dout			dard	3-Day*			
C. C.			No. of the last of	101			1		Right In the						
Address 800 Bancott	- Wa		Sure	101			-	Samples	c Colle		_	es Will App			
City, State & Zip Berkeley	CA	1947	(0)				,	W		tate?			Report Re		
Contact Brian Hastings								C	ther_			Fa		Mail On EDD	ly
Phone (530) 550- 9116	Collecto	r's Name	Bna	in Has	tun	95		Complia Yes	ance r	Nonito	_	Other			
Fax		oject Nar	1	dee_1		dor	Rep	oort to F	Regula	atory A	gency?	Sta	andard Q	C Requ	
P.O. Number		oject Nur		13131				100							
	The state of the s		ilbei	1709		NO.				Anal	yses	Reque	sted		
Billing Address (if differen			drose)		S	OF	T	T	1	T	T	Til	T	T	TI
	t triair Gr	IEIIL AUC	11633)		A M	С		1-	_	2					
CompanyAddress					P	0		7/3	7	nond					
City, State & Zip					L	N	1:	2/5	2	Zt.					
Contact					E	T	1	Alž	10	7					
Phone					Т	î	13	12	1	7					
Fax					Y	N	13	150	2	1,4	1		1 1		
Email					P	E R	ota	5	6	1-	0				
SAMPLE ID/LOCATION	١		DATE	TIME		S	1-	9							Spl.
SDOE 008936 (1)		((11/15)	21:36	SW	2	X	X	X	X	X				1
SDOE 008936 (2)			11/16	6:48	SW	2	X	X	X	X	X				2
SDOE 008936 (3)			11/16	8:47	SW	2	X	X	X	X	X				3
SDOE 008936 (4)			11/16	12:25	SW	2	X	X	X	X	X				+
D-16 (1)			11/16		SW	7	X	X	X	X	1				5
D16 (1) But			1110	_	5	-	/-	1	\dashv	1					is
DIG (1) BUT								+	\dashv		+			-	N
D-1/ (6)			, b.	1007	1.1	0		V.	-			-	\vdash		1
D-16 (A)			11/16	1447	74	V		()	X	X	X		17	11	2 _
C-24 (1)		(11/15	1946	52	2	X	X	X	X	X				04 -
C-24(2)		(1115	2230	SW	2	X	X	X	X	X		6.	32	11
(-24(3)			11/16	1:10	SW	2	X	X	X	X	X				T.V.
Instruction Comments Special Requirements:			11/16	9:01	SW	2	×	X	X	X	X				5
	+ ,						1	1	-	-	/	7			7.
Sample Matrix/ Type Key** DW = Drinking Water WW =	Wastewater \$	SW = Surfac	e Water MW	= Monitoring	Well S	D = So	olid/Sluc	dae SC) = So	ii HW	= Hazar	dous Wast	te OTHE	R:	
SAMPLE RECEIPT	DATE	TIME		nples Re					T			les Re		Daniel Co.	
Temperature °C	11/17	1545	P	11-	7		_		5		_	1			1
Custody Seals Intact? Y N None	7,17	157,	3-	VIA		2		(de				\rightarrow
Number of Containers													-		
WETLAB'S Standard Terms and Con	iditions a	nu vlaga	less writ	ten agre	emer	ntss	peci	fy oth	nerw	rise	Pavn	nent te	rms a	re Ne	t 30
	ALTONOMIC STREET, STRE								- No. 5 Links				U		

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636).

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

			rdous Wa	ste and V	Vater	Anai	ysis.	R	eport ue Da			163		
475 E. Greg Street #119 Spar tel (775) 355-0202 fax (775) 3 1084 Lamoille Hwy Elko, Nevad	355-0817							Pa	age _	1	of_Z			
tel (775) 777-9933 I fax (775)	777-9933	I www.V	VETLabora	tory.com					Turn	around T	ime Requi	rements		
lient Balance Hydrologi						Out Inc.				tandard	X			
	- (na	1				-	-Day* 8 Hour*			3-Day 24 Ho			_
ddress 800 Bancott	Way	Stiet	e lol								ges Will Ap			
ity, State & Zip Beskeley . Cl	+ 94	F710							h State	d From		Report Res	ults Via	
ontact Brian Hastings								NVOthe	er	toring?	Fa		ail Only	
hone (530) 550-9776	Collecto	r's Name	Buran	Hash	95		,	'es	0	No	Other	r		
ax	PWS/Pr	oject Nam	ne Truc	kan	ead	as		rt to Reg	ulatory	Agency?	Sta Yes	andard QC	Require No	d?
O. Number	2500	oject Num		-1315										
mail bhastingse balancehyas						NO.			Ana	alyses	Reque	sted		
Billing Address (if different			ress)		SA	OF	1	1	1	IT				
Company					M	С	1	13	1 1				1 1	
Address					P	0	1 -	Mosphen			1 1			
City, State & Zip					L	N	0	S	.					
Contact					-	TA	Tace,	3	_					
Phone					Т	î	14	9	1			11		
ax					Y	N	1	7	2/	250				-
Email					P	E R	Ta	000	35	nal				
SAMPLE ID/LOCATION			DATE	TIME	-	S	1-21	- 5	5/1-	-	\perp		\perp	Spl No
SBCCCWW (1)			11/16		SW	2	X	$\times \times$	X	X			-	+13
SBC@ CWW (2)			11/16	6:45		V	X)	$\times \times$	X	X			_	114
SBCCWW(3)			11/16	17:30		2	X	$\times \times$	X	X			_	18
4200 CWW (4)			1117	02:00	SW	2	X	XX	X	X				16
NDC BFD (1)			11/16	300	SW	2	X	XX	\times					19
NDC BFD (2)			11/16	630	SW	2	X)	\times	X	X				Po
NTD @ BFD (3)	22.00		11/16	1000	SM	2	X	$\langle \rangle$	X	X				to
ATDEBED (4)		11-11-11	11/16	1430	SW	2	X	XX	X	X				20
WIENTD			1	230 a	SW	2	X	XX	X	X			1	2
YD @ SBC (1)			11/16	8.50	SW	1	X	XX	X	X		1	111	າ'
VDCSBC (4)			11/17	13:20	SW	2	X	$X \mid X$	X	X			632	-
structions/Comments/Special Requirements:			2 -								Next en		1	
		15-55	-Very										diam'r	
Sample Matrix/ Type Key** DW = Drinking Water WW =	Wastewater	SW = Surfac	ce Water MV	V = Monitorin	g Well	SD = S	olid/Slud	ge SO:	Soil H	IW = Haz	ardous Wa	ste OTHER	l:	
SAMPLE RECEIPT	DATE	TIME	Sa	mples R	elinq	uish	ed By			Sam	ples R	eceived	Ву	
Temperature°C	1417	1545	Kan	~ t	Fa			5	/	//	17	1		
Custody Seals Intact? Y N None			-					- 0			-			
oustody ocals intact: 1 14 110110														

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636).

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

Amended

Specializing in Soil, Hazardous Waste and Water Analysis

OrderID:

12/11/2017

Balance Hydrologics 800 Baucroft Ave. Suite 101

Berkeley, CA 94710 Attn: Brian Hastings

Dear: Brian Hastings

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 11/17/2017. Additional comments are located on page 2 of this report.

This is an amended report that includes results for Orthophosphate per client request. If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Andy Smith QA Manager

Western Environmental Testing Laboratory Report Comments

Balance Hydrologics - 1711632 Amended

Specific Report Comments

Due to a laboratory reanalysis requirement the analysis for Nitrate Nitrogen and Nitrite Nitrogen on the submitted samples was performed past the EPA recommended holding time. We apologize for any inconvenience this may have caused.

Report Legend

report Bege	
В	 Blank contamination; Analyte detected above the method reporting limit in an associated blank
D	 Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT	 Sample analyzed beyond the accepted holding time
J	 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
M	 The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance criteria due to probable matrix interference. The reported result should be considered an estimate.
N	 There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC	 Not calculated due to matrix interference
QD	 The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL	 The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
S	 Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC	 Spike recovery not calculated. Sample concentration $>4X$ the spike amount; therefore, the spike could not be adequately recovered
U	 The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B:

A result of zero (0) indicates absence for both coliform and Escherichia coli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolved Oxygen, Sulfite.

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

LAS VEGAS

Western Environmental Testing Laboratory Analytical Report

Balance HydrologicsDate Printed:12/11/2017800 Baucroft Ave. Suite 101OrderID:1711632Berkeley, CA 94710Amended

Attn: Brian Hastings

Phone: (510-704-1000 **Fax:**

PO\Project: Truckee Meadows / 213136

Customer Sample ID: SDOE 008936 (1) **Collect Date/Time:** 11/15/2017 21:36

WETLAB Sample ID: 1711632-001 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.074 HT	mg/L	1	0.010	12/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.20 M	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	160	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	10	mg/L	1	0.26	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	340	mg/L	1	10	11/20/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	7.9 HT	mg/L	5	0.050	11/27/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	2.1	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 SDOE 008936 (2)

 Collect Date/Time:
 11/16/2017 06:48

WETLAB Sample ID: 1711632-002 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.072 HT	mg/L	1	0.010	12/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.20	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	170	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	1.7	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	48	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.023 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.012 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.7	mg/L	0.5	0.20	11/30/2017	NV00925

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

Customer Sample ID: SDOE 008936 (3) **Collect Date/Time:** 11/16/2017 08:47

WETLAB Sample ID: 1711632-003 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.096 HT	mg/L	1	0.010	12/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.20	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	140	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	2.4	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	68	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.26 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.021 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	2.1	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 SDOE 008936 (4)
 Collect Date/Time:
 11/16/2017
 12:25

 WETLAB Sample ID:
 1711632-004
 Receive Date:
 11/17/2017
 15:45

DF Analyte Method Results Units RL Analyzed LabID **General Chemistry** HT 0.010 Orthophosphate, as P SM 4500-P E 0.19 mg/L 1 12/7/2017 NV00925 Total Phosphorous as P SM 4500-P E 0.23 mg/L 1 0.010 11/29/2017 NV00925 Total Suspended Solids (TSS) SM 2540D 56 1 1.0 11/21/2017 NV00925 mg/L Total Nitrogen Calc. 1.9 mg/L 1 0.22 11/30/2017 NV00925 Total Dissolved Solids (TDS) SM 2540C 1 10 130 mg/L 11/21/2017 NV00925 **Anions by Ion Chromatography** HT Nitrate Nitrogen EPA 300.0 0.37 mg/L 1 0.010 11/23/2017 NV00925 EPA 300.0 0.016 HT 1 0.010 Nitrite Nitrogen mg/L 11/23/2017 NV00925 **Flow Injection Analyses** Total Kjeldahl Nitrogen EPA 351.2 1.5 mg/L 0.5 0.20 11/30/2017 NV00925

 Customer Sample ID:
 D-16 (1)
 Collect Date/Time:
 11/16/2017
 00:19

 WETLAB Sample ID:
 1711632-005
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.092 HT	mg/L	1	0.010	12/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.34	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	160	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	4.1	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	120	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.023 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND H	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	4.1 SC	mg/L	0.5	0.20	11/30/2017	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 4 of 12

3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932 **Customer Sample ID:** D-16 (4) **Collect Date/Time:** 11/16/2017 14:47

WETLAB Sample ID: 1711632-006 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.23 HT	mg/L	1	0.010	12/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.22	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	72	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	2.4	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	82	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.18 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.054 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	2.2	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 C-24 (1)
 Collect Date/Time:
 11/15/2017
 19:46

 WETLAB Sample ID:
 17/1632-007
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.20 HT	mg/L	1	0.010	12/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.47	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	130	mg/L	1	1.0	11/21/2017	NV00925
Total Nitrogen	Calc.	2.8	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	87	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.027 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.014 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	2.8	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 C-24 (2)
 Collect Date/Time:
 11/15/2017
 22:30

 WETLAB Sample ID:
 17/1632-008
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.084 HT	mg/L	1	0.010	12/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.17	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	25	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	0.82	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	23	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.056 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.76	mg/L	0.5	0.20	11/30/2017	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 5 of 12

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

LAS VEGAS

Customer Sample ID: C-24 (3) **Collect Date/Time:** 11/16/2017 01:10

WETLAB Sample ID: 1711632-009 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.070 HT	mg/L	1	0.010	12/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.15	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	19	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	0.67	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	20	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.15 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.52	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 C-24 (4)
 Collect Date/Time:
 11/16/2017
 09:01

 WETLAB Sample ID:
 1711632-010
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.093 HT	mg/L	1	0.010	12/7/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.15	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	19	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	1.0	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	18	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.24 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.011 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.78	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 SBC@CWW (1)
 Collect Date/Time:
 11/16/2017
 02:15

 WETLAB Sample ID:
 17/1632-011
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.099	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.17 M	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	58	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	1.4	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	370	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.65 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.72	mg/L	0.5	0.20	11/30/2017	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 6 of 12

LAS VEGAS

Customer Sample ID: SBC@CWW (2) Collect Date/Time: 11/16/2017 06:45

WETLAB Sample ID: 1711632-012 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.18	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.14	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	210	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	2.0	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	290	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.58 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	ND HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.4	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 SBC@CWW (3)

 Collect Date/Time:
 11/16/2017 17:30

WETLAB Sample ID: 1711632-013 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.33	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.24	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	780	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	3.3	mg/L	1	0.24	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	340	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.61 HT	mg/L	2	0.020	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.020 HT	mg/L	2	0.020	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	2.6	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 SBC@CWW (4)
 Collect Date/Time:
 11/17/2017
 02:00

 WETLAB Sample ID:
 1711632-014
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.33	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.21	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	380	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	2.4	mg/L	1	0.24	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	320	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.59 HT	mg/L	2	0.020	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.023 HT	mg/L	2	0.020	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.8	mg/L	0.5	0.20	11/30/2017	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 7 of 12

Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932 Customer Sample ID: NTD@BFD (1) Collect Date/Time: 11/16/2017 03:00

WETLAB Sample ID: 1711632-015 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.11	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.15 M	mg/L	1	0.010	11/29/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	48	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	3.1	mg/L	1	0.24	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	790	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	2.0 HT	mg/L	2	0.020	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.045 HT	mg/L	2	0.020	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.1 M	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 NTD@BFD (2)
 Collect Date/Time:
 11/16/2017
 06:30

 WETLAB Sample ID:
 1711632-016
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.27	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.21	mg/L	1	0.010	11/30/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	84	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	1.7	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	300	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.13 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.11 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.5	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 NTD@BFD (3)
 Collect Date/Time:
 11/16/2017
 10:00

 WETLAB Sample ID:
 1711632-017
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.30	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.22	mg/L	1	0.010	11/30/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	82	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	1.6	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	140	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.062 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.020 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.5	mg/L	0.5	0.20	11/30/2017	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 8 of 12

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

LAS VEGAS

Customer Sample ID: NTD@BFD (4) Collect Date/Time: 11/16/2017 14:30

WETLAB Sample ID: 1711632-018 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.23	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.17	mg/L	1	0.010	11/30/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	37	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	1.5	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	140	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.42 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.014 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.1	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 WI@NTD
 Collect Date/Time:
 11/16/2017
 08:30

 WETLAB Sample ID:
 1711632-019
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.27	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.21	mg/L	1	0.010	11/30/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	110	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	1.9	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	290	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.25 H	Γ mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.12 H	Γ mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.6	mg/L	0.5	0.20	11/30/2017	NV00925

 Customer Sample ID:
 YD@SBC (1)
 Collect Date/Time:
 11/16/2017
 08:50

 WETLAB Sample ID:
 1711632-020
 Receive Date:
 11/17/2017
 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.18	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.13	mg/L	1	0.010	11/30/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	420	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	2.2	mg/L	1	0.22	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	180	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.95 HT	mg/L	1	0.010	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.018 HT	mg/L	1	0.010	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.2	mg/L	0.5	0.20	11/30/2017	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 9 of 12

LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Balance Hydrologics - 1711632 Amended

 Customer Sample ID:
 YD@SBC(4)

 Collect Date/Time:
 11/17/2017
 13:20

WETLAB Sample ID: 1711632-021 **Receive Date:** 11/17/2017 15:45

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.015	mg/L	1	0.010	11/17/2017	NV00925
Total Phosphorous as P	SM 4500-P E	0.11	mg/L	1	0.010	11/30/2017	NV00925
Total Suspended Solids (TSS)	SM 2540D	29	mg/L	1	1.0	11/22/2017	NV00925
Total Nitrogen	Calc.	2.5	mg/L	1	0.24	11/30/2017	NV00925
Total Dissolved Solids (TDS)	SM 2540C	390	mg/L	1	10	11/21/2017	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.6 HT	mg/L	2	0.020	11/23/2017	NV00925
Nitrite Nitrogen	EPA 300.0	0.083 HT	mg/L	2	0.020	11/23/2017	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.80	mg/L	0.5	0.20	11/30/2017	NV00925

Western Environmental Testing Laboratory QC Report

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC17110744	Blank 1	Orthophosphate, as P	SM 4500-P E	ND			mg/L
QC17110744	Blank 2	Orthophosphate, as P	SM 4500-P E	ND			mg/L
QC17110886	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC17110957	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L
QC17110960	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L
		Nitrite Nitrogen	EPA 300.0	ND			mg/L
QC17110964	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC17110967	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L
QC17110968	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L
		Nitrite Nitrogen	EPA 300.0	ND			mg/L
QC17111019	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC17111039	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L
QC17111041	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L
QC17111097	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L
QC17111099	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L
QC17120003	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L
QC17120263	Blank 1	Orthophosphate, as P	SM 4500-P E	ND			mg/L
QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC17110744	LCS 1	Orthophosphate, as P	SM 4500-P E	0.244	0.250	97	mg/L
QC17110744	LCS 2	Orthophosphate, as P	SM 4500-P E	0.244	0.250	97	mg/L
QC17110886	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	138	150	92	mg/L
QC17110886	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	159	150	106	mg/L
QC17110957	LCS 1	Total Suspended Solids (TSS)	SM 2540D	199	200	99	mg/L
QC17110957	LCS 2	Total Suspended Solids (TSS)	SM 2540D	199	200	99	mg/L
QC17110960	LCS 1	Nitrate Nitrogen	EPA 300.0	0.477	0.500	95	mg/L
		Nitrite Nitrogen	EPA 300.0	0.465	0.500	93	mg/L
QC17110964	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	143	150	95	mg/L
QC17110964	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	142	150	95	mg/L
QC17110967	LCS 1	Total Suspended Solids (TSS)	SM 2540D	200	200	100	mg/L
QC17110967	LCS 2	Total Suspended Solids (TSS)	SM 2540D	198	200	99	mg/L
QC17110968	LCS 1	Nitrate Nitrogen	EPA 300.0	0.470	0.500	94	mg/L
		Nitrite Nitrogen	EPA 300.0	0.457	0.500	91	mg/L
QC17111019	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	137	150	91	mg/L
QC17111019	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	142	150	95	mg/L
QC17111039	LCS 1	Total Phosphorous as P	SM 4500-P E	0.236	0.250	94	mg/L
QC17111041	LCS 1	Total Phosphorous as P	SM 4500-P E	0.257	0.250	103	mg/L
QC17111097	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	1.07	1.00	107	mg/L
QC17111099	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	0.960	1.00	96	mg/L
004740000	1004	- I - I - I		0.004			•

QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC17110886	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1711565-002	2856	2900	mg/L	2 %
QC17110886	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1711634-002	334	342	mg/L	2 %
QC17110957	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1711617-006	65.6	66.8	mg/L	2 %
QC17110957	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1711632-005	156	152	mg/L	3 %

0.224

0.253

0.250

0.250

90

101

SM 4500-P E

SM 4500-P E

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Total Phosphorous as P

Orthophosphate, as P

Page 11 of 12

QC17120003

QC17120263

LCS 1

LCS₁

mg/L

mg/L

QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC17110964	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1711639-002	236	241	mg/L	2 %
QC17110964	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1711639-003	245	237	mg/L	3 %
QC17110967	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1711632-008	24.7	26.3	mg/L	7 %
QC17110967	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1711632-018	37.0	37.0	mg/L	<1%
QC17111019	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1711632-011	366	357	mg/L	2 %
QC17111019	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1711632-021	390	383	mg/L	2 %

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC17110744 MS 1	Orthophosphate, as P	SM 4500-P E	1711571-001	0.150		0.387	0.390	0.25	mg/L	95	96	<1
QC17110744 MS 2	Orthophosphate, as P	SM 4500-P E	1711622-002	ND		0.235	0.239	0.25	mg/L	90	92	2
QC17110744 MS 3	Orthophosphate, as P	SM 4500-P E	1711622-005	0.041		0.273	0.274	0.25	mg/L	93	93	<1
QC17110960 MS 1	Nitrate Nitrogen	EPA 300.0	1711617-001	0.079	HT	0.618	0.603	0.5	mg/L	108	105	2
	Nitrite Nitrogen	EPA 300.0	1711617-001	ND	HT	0.127	0.129	0.125	mg/L	99	101	2
QC17110960 MS 2	Nitrate Nitrogen	EPA 300.0	1711632-009	0.149	HT	0.666	0.668	0.5	mg/L	103	104	<1
	Nitrite Nitrogen	EPA 300.0	1711632-009	ND	HT	0.127	0.128	0.125	mg/L	97	98	<1
QC17110968 MS 1	Nitrate Nitrogen	EPA 300.0	1711632-015	2.00	HT	3.05	3.03	0.5	mg/L	106	103	<1
	Nitrite Nitrogen	EPA 300.0	1711632-015	0.045	HT	0.257	0.256	0.125	mg/L	85	84	<1
QC17110968 MS 2	Nitrate Nitrogen	EPA 300.0	1711632-021	1.61	HT	2.64	2.62	0.5	mg/L	103	101	<1
	Nitrite Nitrogen	EPA 300.0	1711632-021	0.083	HT	0.314	0.309	0.125	mg/L	93	91	2
QC17111039 MS 1	Total Phosphorous as P	SM 4500-P E	1711632-001	0.201	M	0.302	0.327	0.25	mg/L	NC	NC	NC
QC17111039 MS 2	Total Phosphorous as P	SM 4500-P E	1711632-010	0.147		0.372	0.356	0.25	mg/L	90	84	4
QC17111041 MS 1	Total Phosphorous as P	SM 4500-P E	1711632-011	0.166	M	0.344	0.400	0.25	mg/L	NC	NC	NC
QC17111041 MS 2	Total Phosphorous as P	SM 4500-P E	1711632-015	0.154	M	0.290	0.355	0.25	mg/L	NC	NC	NC
QC17111097 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1711624-007	0.342		0.860	0.810	0.5	mg/L	104	94	6
QC17111097 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1711632-005	4.08	SC	4.86	5.10	0.5	mg/L	NC	NC	NC
QC17111099 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1711632-015	1.10	M	1.50	1.54	0.5	mg/L	NC	NC	NC
QC17111099 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1711694-004	ND	M,	0.448	0.460	0.5	mg/L	NC	NC	NC
QC17120003 MS 1	Total Phosphorous as P	SM 4500-P E	1711694-001	0.017		0.241	0.241	0.25	mg/L	90	90	<1
QC17120003 MS 2	Total Phosphorous as P	SM 4500-P E	1711694-006	0.021		0.240	0.250	0.25	mg/L	88	92	4
QC17120263 MS 1	Orthophosphate, as P	SM 4500-P E	1711632-001	0.074	HT	0.296	0.299	0.25	mg/L	89	90	1

WETLAB WESTERN ENVIRONMENTAL TESTING LABORATORY Specie	alizing in S	Soil, Hazai	rdous Wa	ste and V	Vater	Anal	lysis.		Repo	Numb ort Date	er \	711	63	> 7	7
475 E. Greg Street #119 Spal tel (775) 355-0202 fax (775)									Page	ort	10	f 7			
1084 Lamoille Hwy I Elko, Neva tel (775) 777-9933 I fax (775)		3 I www.V	WETLabora	torv.com					- 7		und Tim	e Requir	ements		
		1		301 y.00111						Stand	dard	X			
Client Balance Hydrel							-	5-Day*	1000			3-Day*		-	-
Address 800 Bancoott			sule	_					s Will App	oly					
City, State & Zip Berkeley	CA	1947	10				S	Samples Collected From Which State?					Report Re	sults Vi	a
Contact Bran Hastings								NV CA Other Compliance Monitoring?						Mail Only	
Phone (530) 550- 9116	Collect	or's Name	Bna	in that	tun	95		Yes	ance iv	No	_	Other			
Fax			ne Irn		lead	1.	Rep	Yes	Regula	No	-	Sta Yes	ndard QC	Require No	ed?
P.O. Number	PWS/P	roject Nur	nber 7	13130	0										
Email bhastings@balancehy						NO.			1	Analy	ses F	Reque	sted		
Billing Address (if differen			iress)		SA	OF				X		111			
Company					M	С		1-		Moud					
Address					P	O N	1	2 8	2 3	act .					
City, State & Zip					E	T	1 8	文化	1 2	2	1 1				
Contact					_	A	116	EN-	2	1		-			
PhoneFax					T	N	13	ai	1	4	5		11		
Email					Р	Е	相	7	Sta	5	0				
SAMPLE ID/LOCATION	V		DATE	TIME	E	R	10	3	13	1-	H				Spl. No.
SDOE 009936 (1)		(11/15)	21:36	SW	2	X	X	X	X	X	1			1
SDOE 006936 (2)			11/16	6:48	SW	2	X	X	X	X	4				2
SDOE 008936 (3)			11/16	8:47	SW	2	X	X	X	X	X	11			3
SDOE 008936 (4)			11/16	12:25	SW	2	X	X	X	X	X				4
D-16 (1)			11/16	00:19	SW	2	X	X	X	XX					5
D16 (1) But			1	_	5					7					is
126 (1) BULL									7					T	2
D-16 (A)			1116	1447	(W	2	X	X	/	~	1	1		+	1
C-2A (1)	7		11/15	1946	324	2.		5	V.	8	X	+	- 17	11	2 -
(-24 (2)	-	-	11113	7230		2	1	X	(X			63	7	71 T
(-24(3))			11/11/2	1310	(W	4	(X		\bigcirc		-	_00	1	
			11/16	and	(2	(6	10		$\frac{1}{2}$	4			140
Instruction (Comments Special Requirements:			11/16	9:01	ZM	V	7	^	<u>X</u>	7	~	-			W
Sample Matrix/ Type Key** DW = Drinking Water WW =	Wastewater	SW = Surfac	e Water MW	= Monitoring	Well S	D = Sc	olid/Sluc	dge SC) = Soil	HW:	Hazard	ous Wast	e OTHER	:	
SAMPLE RECEIPT	DATE	TIME		nples Re			_		T				ceived	-	
Temperature°C	11/17	1545	R	1/2	to	=	5	7	5		//	1	1		
Custody Seals Intact? Y N None	,			1111						_+	(d)			-	\rightarrow
Number of Containers															
WETLAB'S Standard Terms and Con	ditions	apply un	less writ	ten agre	emer	nts s	pecif	fy oth	nerw	ise.	Pavm	ent te	rms ar	e Net	30.

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636).

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

			rdous Wa	ste and V	Vater	Anai	ysis.	R	eport ue Da			163		
475 E. Greg Street #119 Spar tel (775) 355-0202 fax (775) 3 1084 Lamoille Hwy Elko, Nevad	355-0817							Pa	age _	1	of_Z			
tel (775) 777-9933 I fax (775)	777-9933	I www.V	VETLabora	tory.com					Turn	around T	ime Requi	rements		
lient Balance Hydrologi						Out Inc.				tandard	X			
	- (na	1				-	-Day* 8 Hour*			3-Day 24 Ho			_
ddress 800 Bancott	Way	Stiet	e lol								ges Will Ap			
ity, State & Zip Beskeley . Cl	+ 94	F710							h State	d From		Report Res	ults Via	
ontact Brian Hastings							NV_CA						ail Only	
hone (530) 550-9776	Collecto	r's Name	Buran	Hash	95		,	'es	0	No	Other	r		
ax	PWS/Pr	oject Nam	ne Truc	kan	ead	as	Report to Regulatory Agency? Standard QC Requ						Require No	d?
O. Number	2500	oject Num		-1315										
mail bhastingse balancehyas						NO.			Ana	alyses	Reque	sted		
Billing Address (if different			ress)		SA	OF	1	1	1	IT				
Company					M	С	1	13	1 1				1 1	
Address					P	0	1 -	Mosphen			1 1			
City, State & Zip					L	N	0	S	.					
Contact					-	TA	Tace,	3	_					
Phone					Т	î	14	9	1			11		
ax					Y	N	1	7	2/	250				-
Email					P	E R	Ta	000	35	nal				
SAMPLE ID/LOCATION			DATE	TIME	-	S	1-21	- 5	5/1-	-	\perp		\perp	Spl No
SBCCCWW (1)			11/16		SW	2	X	$\times \times$	X	X			-	+13
SBC@ CWW (2)			11/16	6:45		V	X)	$\times \times$	X	X			_	114
SBCCWW(3)			11/16	17:30		2	X	$\times \times$	X	X			_	18
4200 CWW (4)			1117	02:00	SW	2	X	XX	X	X				16
NDC BFD (1)			11/16	300	SW	2	X	XX	\times					19
NDC BFD (2)			11/16	630	SW	2	X)	\times	X	X				Po
NTD @ BFD (3)	22.00		11/16	1000	SM	2	X	$\langle \rangle$	X	X				to
ATDEBED (4)		11-11-11	11/16	1430	SW	2	X	XX	X	X				20
WIENTD			1	230 a	SW	2	X	XX	X	X			1	2
YD @ SBC (1)			11/16	8.50	SW	1	X	XX	X	X		1	111	າ'
VDCSBC (4)			11/17	13:20	SW	2	X	$X \mid X$	X	X			632	-
structions/Comments/Special Requirements:			2 -								Next on		1	
		15-55	-Very										diam'r	
Sample Matrix/ Type Key** DW = Drinking Water WW =	Wastewater	SW = Surfac	ce Water MV	V = Monitorin	g Well	SD = S	olid/Slud	ge SO:	Soil H	IW = Haz	ardous Wa	ste OTHER	l:	
SAMPLE RECEIPT	DATE	TIME	Sa	mples R	elinq	uish	ed By			Sam	ples R	eceived	Ву	
Temperature°C	1417	1545	Kom Home					5	/	//	17	1		
Custody Seals Intact? Y N None			-					- 0			-			
oustody ocals intact: 1 14 110110														

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636).

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

Customer: Balance Hydrologics

Contact: Brian Hastings

OrderID: 1801598

PO: 213136

ProjectID:

Date Received: 1/19/2018

Time Received: 10:50

Order Due Date: 2/2/2018

Temperature

Upon Receipt: 6.1C Cooler + wet ice

WETLab SampleNumber: 1801598-001 Customer SampleNumber: D-16 (1)

[TDS with Prep]

Method: SM 2540C

Total Dissolved Solids (TDS)

[Additional Parameters]

Method: Calc.

Total Nitrogen

Method: EPA 300.0

Nitrate Nitrogen, Nitrite Nitrogen

Method: EPA 351.2

Total Kjeldahl Nitrogen

Method: SM 2540D

Total Suspended Solids (TSS)

Method: SM 4500-P E

Orthophosphate, as P

Total Phosphorous as P

Sample Date/Time: 1/18/2018 9:36:00 PM

WETLab SampleNumber: 1801598-002

Customer SampleNumber: D-16(2)

[TDS with Prep]

Method: SM 2540C

Total Dissolved Solids (TDS)

[Additional Parameters]

Method: Calc.

Total Nitrogen

Method: EPA 300.0

Nitrate Nitrogen, Nitrite Nitrogen

Method: EPA 351.2

Total Kjeldahl Nitrogen

Method: SM 2540D

Total Suspended Solids (TSS)

Method: SM 4500-P E

Orthophosphate, as P

Total Phosphorous as P

[TDS with Prep]

Method: SM 2540C

Total Dissolved Solids (TDS)

[Additional Parameters]

Method: Calc.

Total Nitrogen

Method: EPA 300.0

Nitrate Nitrogen, Nitrite Nitrogen

Method: EPA 351.2

Total Kjeldahl Nitrogen

Method: SM 2540D

Total Suspended Solids (TSS)

Method: SM 4500-P E

Orthophosphate, as P

Total Phosphorous as P

[TDS with Prep]

Method: SM 2540C

Total Dissolved Solids (TDS)

[Additional Parameters]

Method: Calc.

Total Nitrogen

Method: EPA 300.0

Nitrate Nitrogen, Nitrite Nitrogen

Method: EPA 351.2

Total Kjeldahl Nitrogen

Method: SM 2540D

Total Suspended Solids (TSS)

Method: SM 4500-P E

Orthophosphate, as P

Total Phosphorous as P

Specializing in Soil, Hazardous Waste and Water Analysis

OrderID:

2/8/2018

Balance Hydrologics 800 Baucroft Ave. Suite 101 Berkeley, CA 94710

Attn: Brian Hastings

Dear: Brian Hastings

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 1/19/2018. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Jennifer Delaney QA Specialist

Western Environmental Testing Laboratory Report Comments

Balance Hydrologics - 1801598

Specific Report Comments

None

Report Legend

В	 Blank contamination; Analyte detected above the method reporting limit in an associated blank
D	 Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT	 Sample analyzed beyond the accepted holding time
J	 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
M	 The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance criteria due to probable matrix interference. The reported result should be considered an estimate.
N	 There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC	 Not calculated due to matrix interference
QD	 The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL	 The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
S	 Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC	 Spike recovery not calculated. Sample concentration >4X the spike amount; therefore, the spike could not be adequately recovered
U	 The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B:

A result of zero (0) indicates absence for both coliform and Escherichia coli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolved Oxygen, Sulfite.

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

LAS VEGAS

3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Western Environmental Testing Laboratory Analytical Report

Balance HydrologicsDate Printed:2/8/2018800 Baucroft Ave. Suite 101OrderID:1801598

Berkeley, CA 94710
Attn: Brian Hastings

Phone: (510-704-1000 **Fax:**

PO\Project: 213136

 Customer Sample ID:
 D-16 (1)
 Collect Date/Time:
 1/18/2018
 21:36

 WETLAB Sample ID:
 1801598-001
 Receive Date:
 1/19/2018
 10:50

DF Analyte Method Results Units RL Analyzed LabID **General Chemistry** 0.010 Orthophosphate, as P 0.16 1 1/19/2018 SM 4500-P E mg/L NV00925 mg/L 5 0.050 Total Phosphorous as P SM 4500-P E 1.0 2/5/2018 NV00925 Total Suspended Solids (TSS) SM 2540D 100 1.0 mg/L 1 1/22/2018 NV00925 Total Nitrogen Calc. 5.9 mg/L 1 0.22 1/24/2018 NV00925 Total Dissolved Solids (TDS) SM 2540C 270 mg/L 1 10 1/23/2018 NV00925 **Anions by Ion Chromatography** Nitrate Nitrogen 0.010 1/19/2018 EPA 300.0 1.2 mg/L 1 NV00925 NV00925 Nitrite Nitrogen 0.17 0.010 EPA 300.0 M mg/L 1 1/19/2018 **Flow Injection Analyses** Total Kjeldahl Nitrogen EPA 351.2 4.5 mg/L 0.20 1/24/2018 NV00925

 Customer Sample ID:
 D-16 (2)
 Collect Date/Time:
 1/18/2018
 22:17

 WETLAB Sample ID:
 1801598-002
 Receive Date:
 1/19/2018
 10:50

Analyte Method Results Units DF RL Analyzed LabID **General Chemistry** 0.010 Orthophosphate, as P SM 4500-P E 1/19/2018 NV00925 0.20 1 mg/L SM 4500-P E 5 0.050 Total Phosphorous as P 0.33 mg/L 2/5/2018 NV00925 Total Suspended Solids (TSS) SM 2540D 98 mg/L 1.0 1/22/2018 NV00925 Total Nitrogen Calc. 4.9 mg/L 0.22 1/24/2018 NV00925 Total Dissolved Solids (TDS) SM 2540C 200 mg/L 1 10 1/23/2018 NV00925 **Anions by Ion Chromatography** Nitrate Nitrogen 1.0 0.010 1/19/2018 NV00925 EPA 300.0 mg/L 0.010 Nitrite Nitrogen EPA 300.0 0.11 1 1/19/2018 NV00925 mg/L **Flow Injection Analyses** Total Kjeldahl Nitrogen EPA 351.2 3.8 0.5 0.20 1/24/2018 NV00925 mg/L

Elko, Nevada 89801 tel (775) 777-9933

fax (775) 777-9933

EPA LAB ID: NV00926

LAS VEGAS

Customer Sample ID: D-16 (3) **Collect Date/Time:** 1/18/2018 22:48

WETLAB Sample ID: 1801598-003 **Receive Date:** 1/19/2018 10:50

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.19	mg/L	1	0.010	1/19/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.73	mg/L	5	0.050	2/5/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	79	mg/L	1	1.0	1/22/2018	NV00925
Total Nitrogen	Calc.	4.2	mg/L	1	0.22	1/24/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	210	mg/L	1	10	1/23/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.76	mg/L	1	0.010	1/19/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.12	mg/L	1	0.010	1/19/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	3.3	mg/L	0.5	0.20	1/24/2018	NV00925

 Customer Sample ID:
 D-16 (4)
 Collect Date/Time:
 1/18/2018
 23:42

 WETLAB Sample ID:
 1801598-004
 Receive Date:
 1/19/2018
 10:50

DF Analyte Method Results Units RLAnalyzed LabID **General Chemistry** Orthophosphate, as P 0.010 SM 4500-P E 0.16 mg/L 1 1/19/2018 NV00925 Total Phosphorous as P SM 4500-P E 0.44 mg/L 5 0.050 2/8/2018 NV00925 Total Suspended Solids (TSS) SM 2540D 45 mg/L 1 1.0 1/22/2018 NV00925 Total Nitrogen Calc. 3.9 mg/L 1 0.22 1/24/2018 NV00925 10 Total Dissolved Solids (TDS) SM 2540C 180 1 NV00925 mg/L 1/23/2018 **Anions by Ion Chromatography** 0.010 Nitrate Nitrogen EPA 300.0 0.64 mg/L 1 1/19/2018 NV00925 Nitrite Nitrogen EPA 300.0 1 0.010 NV00925 0.10 mg/L 1/19/2018

3.2

mg/L

0.5

0.20

1/24/2018

NV00925

EPA 351.2

Flow Injection Analyses

Total Kjeldahl Nitrogen

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

Western Environmental Testing Laboratory QC Report

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units	
QC18010673	Blank 1	Orthophosphate, as P	SM 4500-P E	ND			mg/L	
QC18010695	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L	
		Nitrite Nitrogen	EPA 300.0	ND			mg/L	
QC18010763	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L	
QC18010800	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L	
QC18010806	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L	
QC18010817	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L	
QC18010861	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L	
QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units	
QC18010673	LCS 1	Orthophosphate, as P	SM 4500-P E	0.232	0.250	93	mg/L	
QC18010695	LCS 1	Nitrate Nitrogen	EPA 300.0	0.486	0.500	97	mg/L	
		Nitrite Nitrogen	EPA 300.0	0.498	0.500	100	mg/L	
QC18010763	LCS 1	Total Suspended Solids (TSS)	SM 2540D	200	200	100	mg/L	
QC18010763	LCS 2	Total Suspended Solids (TSS)	SM 2540D	200	200	100	mg/L	
QC18010800	LCS 1	Total Phosphorous as P	SM 4500-P E	0.218	0.250	87	mg/L	
QC18010806	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	0.945	1.00	94	mg/L	
QC18010817	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	143	150	95	mg/L	
QC18010817	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	138	150	92	mg/L	
QC18010861	LCS 1	Total Phosphorous as P	SM 4500-P E	0.270	0.250	108	mg/L	
QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC18010763	Duplicate 1	1 Total Suspended Solids (TSS)	SM 2540D	1801587-001	4.33	4.00	mg/L	8 %
QC18010763	Duplicate 2	2 Total Suspended Solids (TSS)	SM 2540D	1801622-001	ND	ND	mg/L	<1%

QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC18010763	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1801587-001	4.33	4.00	mg/L	8 %
QC18010763	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1801622-001	ND	ND	mg/L	<1%
QC18010817	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1801593-011	292	298	mg/L	2 %
QC18010817	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1801640-001	826	850	mg/L	3 %

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC18010673 MS 1	Orthophosphate, as P	SM 4500-P E	1801599-001	0.233		0.459	0.451	0.25	mg/L	90	87	2
QC18010695 MS 1	Nitrate Nitrogen	EPA 300.0	1801598-001	1.16		1.67	1.66	0.5	mg/L	102	100	<1
	Nitrite Nitrogen	EPA 300.0	1801598-001	0.166	M	0.248	0.242	0.125	mg/L	NC	NC	NC
QC18010800 MS 1	Total Phosphorous as P	SM 4500-P E	1801415-005	ND	M	0.150	0.133	0.25	mg/L	NC	NC	NC
QC18010800 MS 2	Total Phosphorous as P	SM 4500-P E	1801587-001	0.045		0.255	0.264	0.25	mg/L	84	87	4
QC18010806 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1801421-012	0.392	M	0.995	0.950	0.5	mg/L	NC	NC	NC
QC18010806 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1801421-011	ND	M	0.605	0.850	0.5	mg/L	NC	NC	NC
QC18010861 MS 1	Total Phosphorous as P	SM 4500-P E	1801652-001	0.332		0.546	0.541	0.25	mg/L	85	83	<1
QC18010861 MS 2	Total Phosphorous as P	SM 4500-P E	1801653-001	0.495		0.726	0.626	0.25	mg/L	93	53	15

 $DF \hbox{=-}Dilution\ Factor,\ RL \hbox{=-}Reporting\ Limit,\ ND \hbox{=-}Not\ Detected\ or\ <\!RL$

		-								_	-				
	alizing in Soil, Haza		aste and V	/ater	· Ana	lysis.	Re	b Nun eport ue Dat		18	100	50	18		
475 E. Greg Street #119 I Sparks, Nevada 89431 tel (775) 355-0202 I fax (775) 355-0817								Page of							
1084 Lamoille Hwy I Elko, Nevada 89801 tel (775) 777-9933 I fax (775) 777-9933 I www.WETLaboratory.com							Turnaround Time Requirements								
- 11 1 (Standard								
Client Balance Hydrologics						5-Day*3-Day* 48 Hour* 24 Hour*									
Address 12020 Donner Pass Rd							*Surcharges Will Apply Samples Collected From								
City, State & Zip Truckee CA 96161						Sa	Which State?					Report Results Via			
Contact Brian Hastings						Other Compliance Monitoring?					Fax Mail Only PDF EDD				
Phone 530 - 550 . 9776 Collector's Name FT						Yes No.					Other:				
Fax	PWS/Project Name 213136					Report to Regulatory Agency? Yes No				y?	Standard QC Required? Yes No				
P.O. Number	PWS/Project Nu	mber													
mail bhastings a bulance hydro, com						Analyses F				s Red	Requested				
Billing Address (If different than Client Address)												11			
Company Balance Hydrologics							1	1	1						
Address 900 Fancroft way ste 101							13						1		
City, State & Zip Berkeley CA 94710 Contact Rachel Boitano							17	k	1		1. \	1801	1		
Phone 510 - 704 - 1000						12	14	4	7		11	rng	4		
Fax							La.	\$	gv	1.1		598	TI		
Email 1 boitano (a balance hydro com							7	7	7	n.t					
SAMPLE ID/LOCATION	DATE	TIME	E	R	H	41	15	11	1			Spl. No.			
D-16 (1)		1/18/19	21:36	Aa	1	X	XX	X	X	X					
D-16(2)			22:17	1	1	X	XX	X	X	X			2		
D-16 (3)			22:49			X	1 X	X	X	X			3		
0-1/ (1)			2342	1	H	VE	7 7	V	Y	V			I		
D-16 (4)	energy and	V	0790	1	+	7	4	7	1	A			7		
											+	-			
			-	page 1											
	1891														
Instructions/Comments/Special Requirements:															
											13				
Sample Matrix/ Type Key** DW = Drinking Water WW =	Wastewater SW = Surfa	ce Water MV	V = Monitoring	Well \$	SD = S	olid/Sludg	ge SO =	Soil HV	N = Ha	zardous	Waste O	THER:			
SAMPLE RECEIPT	DATE TIME	Sa	Samples Relinquished					Sampl				es Received By			
Temperature°C	1/19/18 10:50	1						W	l	17	100	el	40		
Custody Seals Intact? Y N None	1 110							41	0	100		7			
Number of Containers 4	and the most are												J# (\$50)		
WETLAB'S Standard Terms and Cor	nditions apply u	nless wri	tten agree	eme	nts s	pecif	othe	rwise	. Pay	men	t term	s are N	let 30.		

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636).

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

1802191

Specializing in Soil, Hazardous Waste and Water Analysis

OrderID:

2/17/2018

Balance Hydrologics 800 Baucroft Ave. Suite 101 Berkeley, CA 94710 Attn: Brian Hastings

Attn: Brian Hastings

Dear: Brian Hastings

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 2/6/2018. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Andy Smith QA Manager

Elko, Nevada 89801 tel (775) 777-9933

fax (775) 777-9933

EPA LAB ID: NV00926

Western Environmental Testing Laboratory Report Comments

Balance Hydrologics - 1802191

Specific Report Comments

None

Report Legend

В	 Blank contamination; Analyte detected above the method reporting limit in an associated blank
D	 Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT	 Sample analyzed beyond the accepted holding time
J	 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
M	 The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance criteria due to probable matrix interference. The reported result should be considered an estimate.
N	 There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC	 Not calculated due to matrix interference
QD	 The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL	 The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
S	 Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC	 Spike recovery not calculated. Sample concentration $>4X$ the spike amount; therefore, the spike could not be adequately recovered
U	 The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B:

A result of zero (0) indicates absence for both coliform and Escherichia coli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolved Oxygen, Sulfite.

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

Western Environmental Testing Laboratory Analytical Report

Balance Hydrologics Date Printed: 2/17/2018 1802191 800 Baucroft Ave. Suite 101 OrderID:

Berkeley, CA 94710 Attn: Brian Hastings

Phone: (510-704-1000 Fax:

PO\Project: 213136

Customer Sample ID: SBC @ NAR **Collect Date/Time:** 2/6/2018 11:15

WETLAB Sample ID: 1802191-001 **Receive Date:** 2/6/2018 14:55

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.18	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.31	mg/L	1	0.010	2/9/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	32	mg/L	1	1.0	2/12/2018	NV00925
Total Nitrogen	Calc.	0.95	mg/L	1	0.22	2/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	310	mg/L	1	10	2/12/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.15	mg/L	1	0.010	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.023	mg/L	1	0.010	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.77	mg/L	0.5	0.20	2/12/2018	NV00925

Customer Sample ID: SBC @ RHR **Collect Date/Time:** 2/6/2018 13:22

WETLAB Sample ID: 1802191-002 Receive Date: 2/6/2018 14:55

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.17	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.28	mg/L	1	0.010	2/9/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	25	mg/L	1	1.0	2/12/2018	NV00925
Total Nitrogen	Calc.	0.97	mg/L	1	0.22	2/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	170	mg/L	1	10	2/12/2018	NV00925
Microbiological Analyses							
Total Coliform (MPN)	SM 9223B (Quantitray)	328.2	MPN/100ml	1	1.0	2/6/2018	NV00925
Escherichia Coli (MPN)	SM 9223B (Quantitray)	21.3	MPN/100ml	1	1.0	2/6/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.13	mg/L	1	0.010	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.027	mg/L	1	0.010	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.82	M mg/L	0.5	0.20	2/12/2018	NV00925

 $DF{=}Dilution\ Factor,\ RL{=}Reporting\ Limit,\ ND{=}Not\ Detected\ or\ {<}RL$

Page 3 of 5

Customer Sample ID: TC @ SMP Collect Date/Time: 2/6/2018 14:10

WETLAB Sample ID: 1802191-003 **Receive Date:** 2/6/2018 14:55

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.039	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.063	mg/L	1	0.010	2/9/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	2	mg/L	1	1	2/12/2018	NV00925
Total Nitrogen	Calc.	ND	mg/L	1	0.22	2/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	73	mg/L	1	10	2/13/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	ND	mg/L	1	0.010	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	ND	mg/L	0.5	0.20	2/12/2018	NV00925

Customer Sample ID: WC @ OUH Collect Date/Time: 2/6/2018 12:50

WETLAB Sample ID: 1802191-004 **Receive Date:** 2/6/2018 14:55

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.014	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.033	mg/L	1	0.010	2/9/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	1	mg/L	1	1	2/12/2018	NV00925
Total Nitrogen	Calc.	ND	mg/L	1	0.22	2/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	67	mg/L	1	10	2/13/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	ND	mg/L	1	0.010	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND M	mg/L	1	0.010	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	ND	mg/L	0.5	0.20	2/12/2018	NV00925

EPA LAB ID: NV00926

Western Environmental Testing Laboratory QC Report

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units	
QC18020207	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L	
		Nitrite Nitrogen	EPA 300.0	ND			mg/L	
QC18020209	Blank 1	Orthophosphate, as P	SM 4500-P E	ND			mg/L	
QC18020209	Blank 2	Orthophosphate, as P	SM 4500-P E	ND			mg/L	
QC18020227	Blank 1	Total Coliform (MPN)	SM 9223B (Qu	ND			MPN/100ml	
		Escherichia Coli (MPN)	SM 9223B (Qu	ND			MPN/100ml	
QC18020297	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L	
QC18020347	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L	
QC18020423	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L	
QC18020424	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L	
QC18020456	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L	
QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units	
QC18020207	LCS 1	Nitrate Nitrogen	EPA 300.0	0.472	0.500	94	mg/L	
		Nitrite Nitrogen	EPA 300.0	0.477	0.500	95	mg/L	
QC18020209	LCS 1	Orthophosphate, as P	SM 4500-P E	0.272	0.250	109	mg/L	
QC18020209	LCS 2	Orthophosphate, as P	SM 4500-P E	0.267	0.250	107	mg/L	
QC18020297	LCS 1	Total Phosphorous as P	SM 4500-P E	0.273	0.250	109	mg/L	
QC18020347	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	1.10	1.00	110	mg/L	
QC18020423	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	146	150	97	mg/L	
QC18020423	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	146	150	97	mg/L	
QC18020424	LCS 1	Total Suspended Solids (TSS)	SM 2540D	199	200	99	mg/L	
QC18020424	LCS 2	Total Suspended Solids (TSS)	SM 2540D	199	200	100	mg/L	
QC18020456	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	149	150	99	mg/L	
QC18020456	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	142	150	95	mg/L	
				Duplicate	Sample	Duplicate	II II DDD	

QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC18020423	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1802145-003	455	451	mg/L	1 %
QC18020423	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1802327-005	1050	1066	mg/L	2 %
QC18020424	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1802143-001	944	952	mg/L	1 %
QC18020424	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1802191-004	1.00	1.00	mg/L	<1%
QC18020456	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1802250-001	1200	1194	mg/L	1 %
QC18020456	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1802250-002	1168	1144	mg/L	2 %

			G. T	G 1		MC	MCD	0.11		MC	MCD	DDD
QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC18020207 MS 1	Nitrate Nitrogen	EPA 300.0	1802191-004	ND		0.449	0.460	0.5	mg/L	90	92	2
	Nitrite Nitrogen	EPA 300.0	1802191-004	ND	M	0.089	0.089	0.125	mg/L	NC	NC	NC
QC18020209 MS 1	Orthophosphate, as P	SM 4500-P E	1802191-004	0.014		0.274	0.278	0.25	mg/L	104	106	1
QC18020209 MS 2	Orthophosphate, as P	SM 4500-P E	1802250-006	0.173		0.435	0.435	0.25	mg/L	105	105	<1
QC18020209 MS 3	Orthophosphate, as P	SM 4500-P E	1802250-016	0.203		0.449	0.464	0.25	mg/L	99	105	3
QC18020297 MS 1	Total Phosphorous as P	SM 4500-P E	1802180-001	0.071		0.318	0.334	0.25	mg/L	99	106	5
QC18020297 MS 2	Total Phosphorous as P	SM 4500-P E	1802298-001	0.206		0.499	0.466	0.25	mg/L	117	104	7
QC18020347 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1801859-001	0.300		0.790	0.785	0.5	mg/L	98	97	<1
QC18020347 MS 2	Total Kieldahl Nitrogen	EPA 351.2	1802191-002	0.820	M	1.38	1.44	0.5	mg/L	NC	NC	NC

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 5 of 5

A		· · · · ·						Num	har /	1Q>	<u> </u>	BI	\neg
WETLAB WESTERN ENVIRONMENTAL							_	port	ber /	<u> </u>	<u>ت</u> ر	1 (1	\dashv
TESTING LABORATORY Special 475 E. Greg Street #119 Spare	lizing in Soil, Hazar ks. Nevada 89431	dous VVa	ste and V	/ater	Anai	ysis.	Du	e Date)	-			4
tel (775) 355-0202 I fex (775) 3 1084 Lemcille Hwy I Elko, Neved	355-0817						Pa	ge <u> </u>	of	<u> </u>			
tel (775) 777-9933 I fax (775) 7		VETLabora	tory.com			<u> </u>	1		round Tim	e Reguire	ments		4
Client Balance Hydrolog	Lics] ,	5-Day*	Sta	ndard	3-Day*_	_		
Address 12020 Donner	Pass Ro	7					48 Hour*	•	Surcharge	24 Hours Will Appl			
City, State & Zip Truckec	CA 96	161				S	emples Co Which		Erom	R	eport Re	ults Via	
contact Brian Hastin	5					<u> </u>	NV		_	Fax		lail Only DD	
Phone 530 . 550 . 9776	Collector's Name	31					iompliance Yes	C	þ	Other:			
Fax	PWS/Project Nam	ne				_	ort to Regi Yes		Agency?	Star Yes		Required? No	\exists
P.O. Number	PWS/Project Num	nber Z1	3136										
	palancehy		, com	S	NO. OF	-		Ana	lyses F	Reques	sted		4
Billing Address (if different		ress)		Α	OF		11		-	II	- [$/\!\!1$
Company falance tyo	pologics	51-11	01	M P	CO		11		-	II	-		\parallel
Address 500 Fanc ro. City, State & Zip Earkeley C	A 9471	77 (<u> </u>	L	N		11		11				П
Contact Ruchel Foitan	-			E	T	 	la L		11	-	11		
Phone 510- 704-1000				Т	A	~	I = I	4	11	d.	JI	- 1- 1	
Fax				Y	N	13	1 2	dr.	1.1		7 I	-1/1	
Email rbottanow bala	nce hydro		T	P E	E R	19	d	J'V	121	11/3	4	1 6	pl.
SAMPLE ID/LOCATION		DATE	TIME	٨	S	17	370	1/	1 1	9			lo.
GBC WAR	· · · · · · · · · · · · · · · · · · ·	416	11115	As-	2	X	XX	X	スト			++	\dashv
SECWRAR		 	13:22	\vdash		X	<u> </u>	7	7	 		++	\dashv
TOWSMY		1	14:10	μ_	2		7 7	X		+		++	\dashv
WCO OUH		<u> </u>	12:50		2	X	$\frac{\lambda}{\lambda}$	X	<u> </u>	 		++	\dashv
					-	\dashv				+		++	\dashv
						\vdash			-		-	++	\dashv
			-				+	\vdash		+	180	<u>?</u> ' 2'-	၂
			 				+	Н			- -191	. h	\dashv
							_	T		1	- 17 I 	, r .	\dashv
						+	\dashv	$\dagger \exists$		+		++	ㅓ
Instructions/Comments/Special Requirements:		L	1		Ll	<u> </u>							\dashv
moradions/comments/opedia/requirements.												·	ᅦ
Sample Matrix/ Type Key** DW = Drinking Water WW = \	Wastewater SW = Surfac	e Water MW	= Monitoring	Well S	SD = S	olid/Slud	lge SO=	Soil HV	V = Hazard	lous Waste	OTHER	:	
SAMPLE RECEIPT	DATE TIME	Sa	mples Re	lipq	iish	ed By			Samp	los Re	ceive	By	
Temperature <u>7. v</u> ∘c	2/4/8/1455	Y	19)	_		X	7	(M	per		/	
Custody Seals Intact? Y N None					t	_		\mathcal{I}					
Number of Containers								\mathbb{Z}	10				
WETLAB'S Standard Terms and Con	ditions apply un	less wri	tten agre	eme	nts s	pecif	y othe	wise	. Paym	ent ter	rms ar	e Net 30	

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636).

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

1802250

Specializing in Soil, Hazardous Waste and Water Analysis

OrderID:

2/19/2018

Balance Hydrologics 800 Baucroft Ave. Suite 101 Berkeley, CA 94710

Attn: Brian Hastings

Dear: Brian Hastings

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 2/7/2018. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Andy Smith QA Manager

Elko, Nevada 89801 tel (775) 777-9933

fax (775) 777-9933

EPA LAB ID: NV00926

Western Environmental Testing Laboratory Report Comments

Balance Hydrologics - 1802250

Specific Report Comments

None

Report Legend

В	 Blank contamination; Analyte detected above the method reporting limit in an associated blank
D	 Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT	 Sample analyzed beyond the accepted holding time
J	 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
M	 The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance criteria due to probable matrix interference. The reported result should be considered an estimate.
N	 There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC	 Not calculated due to matrix interference
QD	 The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL	 The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
S	 Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC	 Spike recovery not calculated. Sample concentration >4X the spike amount; therefore, the spike could not be adequately recovered
U	 The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B:

A result of zero (0) indicates absence for both coliform and Escherichia coli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolved Oxygen, Sulfite.

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

EPA LAB ID: NV00926

Western Environmental Testing Laboratory Analytical Report

 Balance Hydrologics
 Date Printed:
 2/19/2018

 800 Baucroft Ave. Suite 101
 OrderID:
 1802250

Berkeley, CA 94710
Attn: Brian Hastings

Phone: (510-704-1000 Fax:

PO\Project: 213136

 Customer Sample ID:
 NTD@BFD (1)

 Collect Date/Time:
 2/6/2018 12:00

WETLAB Sample ID: 1802250-001 **Receive Date:** 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.072	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.14 M	mg/L	1	0.010	2/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	44	mg/L	1	1.0	2/12/2018	NV00925
Total Nitrogen	Calc.	2.4	mg/L	1	0.30	2/16/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	1200	mg/L	1	10	2/13/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.4	mg/L	5	0.050	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND D	mg/L	5	0.050	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.1	mg/L	0.5	0.20	2/16/2018	NV00925

Customer Sample ID: NTD@BFD (2) Collect Date/Time: 2/6/2018 18:00

WETLAB Sample ID: 1802250-002 **Receive Date:** 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.072	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.13	mg/L	1	0.010	2/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	10	mg/L	1	1.0	2/12/2018	NV00925
Total Nitrogen	Calc.	2.2	mg/L	1	0.30	2/16/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	1200	mg/L	1	10	2/13/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.4	mg/L	5	0.050	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND D	mg/L	5	0.050	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.82	mg/L	0.5	0.20	2/16/2018	NV00925

EPA LAB ID: NV00926

Customer Sample ID: NTD@BFD (3)

WETLAB Sample ID: 1802250-003

Collect Date/Time: 2/7/2018 00:00

Receive Date: 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.077	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.12	mg/L	1	0.010	2/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	11	mg/L	1	1.0	2/12/2018	NV00925
Total Nitrogen	Calc.	2.1	mg/L	1	0.30	2/16/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	1200	mg/L	1	10	2/13/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.3	mg/L	5	0.050	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND D	mg/L	5	0.050	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.75	mg/L	0.5	0.20	2/16/2018	NV00925

 Customer Sample ID:
 NTD@BFD (4)

 Collect Date/Time:
 2/7/2018 06:00

WETLAB Sample ID: 1802250-004 **Receive Date:** 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.070	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.12	mg/L	1	0.010	2/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	11	mg/L	1	1.0	2/13/2018	NV00925
Total Nitrogen	Calc.	2.2	mg/L	1	0.30	2/16/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	1200	mg/L	1	10	2/13/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.3	mg/L	5	0.050	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND D	mg/L	5	0.050	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.82	mg/L	0.5	0.20	2/16/2018	NV00925

 Customer Sample ID:
 NTD@ORD
 Collect Date/Time:
 2/7/2018
 11:10

 WETLAB Sample ID:
 1802250-005
 Receive Date:
 2/7/2018
 16:01

Results Units DF RLLabID Analyte Method Analyzed **General Chemistry** Orthophosphate, as P SM 4500-P E 0.17 mg/L 1 0.010 2/7/2018 NV00925 Total Phosphorous as P SM 4500-P E 0.22 0.010 mg/L 2/13/2018 NV00925 22 Total Suspended Solids (TSS) SM 2540D mg/L 1 1.0 2/13/2018 NV00925 Total Nitrogen Calc. 3.0 mg/L 1 0.30 2/16/2018 NV00925 Total Dissolved Solids (TDS) SM 2540C 1300 1 10 2/13/2018 NV00925 mg/L **Anions by Ion Chromatography** Nitrate Nitrogen EPA 300.0 2.0 5 0.050 2/7/2018 NV00925 mg/L ND 5 0.050 Nitrite Nitrogen EPA 300.0 D mg/L 2/7/2018 NV00925 **Flow Injection Analyses** Total Kjeldahl Nitrogen EPA 351.2 0.96 0.5 0.20 2/16/2018 NV00925 mg/L

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 4 of 11

Customer Sample ID: NTD@NEP Collect Date/Time: 2/7/2018 11:00

WETLAB Sample ID: 1802250-006 **Receive Date:** 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.17	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.22	mg/L	1	0.010	2/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	22	mg/L	1	1.0	2/13/2018	NV00925
Total Nitrogen	Calc.	3.0	mg/L	1	0.30	2/16/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	1100	mg/L	1	10	2/13/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	2.0	mg/L	5	0.050	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND D	mg/L	5	0.050	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.91	mg/L	0.5	0.20	2/16/2018	NV00925

Customer Sample ID: AC@TR Collect Date/Time: 2/7/2018 10:10

WETLAB Sample ID: 1802250-007 **Receive Date:** 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.014	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.026	mg/L	1	0.010	2/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	1	mg/L	1	1	2/12/2018	NV00925
Total Nitrogen	Calc.	ND	mg/L	1	0.22	2/16/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	660	mg/L	1	10	2/13/2018	NV00925
Microbiological Analyses							
Total Coliform (MPN)	SM 9223B (Quantitray)	127.4	MPN/100ml	1	1.0	2/7/2018	NV00925
Escherichia Coli (MPN)	SM 9223B (Quantitray)	12.2	MPN/100ml	1	1.0	2/7/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	ND	mg/L	1	0.010	2/8/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	2/8/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	ND	mg/L	0.5	0.20	2/16/2018	NV00925

 Customer Sample ID:
 CC@CB
 Collect Date/Time:
 2/7/2018
 09:06

 WETLAB Sample ID:
 1802250-008
 Receive Date:
 2/7/2018
 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.34	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.35	mg/L	1	0.010	2/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	7	mg/L	1	1	2/13/2018	NV00925
Total Nitrogen	Calc.	2.8	mg/L	1	0.30	2/16/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	2400	mg/L	1	10	2/13/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	2.2	mg/L	5	0.050	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND D	mg/L	5	0.050	2/7/2018	NV00925

 $DF \hbox{=-}Dilution\ Factor,\ RL \hbox{=-}Reporting\ Limit,\ ND \hbox{=-}Not\ Detected\ or\ <\!RL$

Page 5 of 11

Balance Hydrologics - 1802250

Customer Sample ID: CC@CB Collect Date/Time: 2/7/2018 09:06

WETLAB Sample ID: 1802250-008 **Receive Date:** 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.52	mg/L	0.5	0.20	2/16/2018	NV00925

Customer Sample ID: BS@SBC Collect Date/Time: 2/7/2018 13:24

WETLAB Sample ID: 1802250-009 **Receive Date:** 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.090	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.12	mg/L	1	0.010	2/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	14	mg/L	1	1.0	2/12/2018	NV00925
Total Nitrogen	Calc.	1.3	mg/L	1	0.22	2/16/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	300	mg/L	1	10	2/13/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.82	mg/L	1	0.010	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.016	mg/L	1	0.010	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.42	mg/L	0.5	0.20	2/16/2018	NV00925

Customer Sample ID: YD@SBC(1) Collect Date/Time: 2/6/2018 12:00

WETLAB Sample ID: 1802250-010 **Receive Date:** 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.044	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.094	mg/L	1	0.010	2/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	24	mg/L	1	1.0	2/12/2018	NV00925
Total Nitrogen	Calc.	2.2	mg/L	1	0.22	2/16/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	360	mg/L	1	10	2/13/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.5	mg/L	1	0.010	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.041	mg/L	1	0.010	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.68	mg/L	0.5	0.20	2/16/2018	NV00925

Customer Sample ID: YD@SBC(2) Collect Date/Time: 2/6/2018 18:00

WETLAB Sample ID: 1802250-011 **Receive Date:** 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.045	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.094	mg/L	1	0.010	2/15/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	25	mg/L	1	1.0	2/12/2018	NV00925
Total Nitrogen	Calc.	2.1	mg/L	1	0.22	2/16/2018	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 6 of 11

Customer Sample ID: YD@SBC(2)

WETLAB Sample ID: 1802250-011

Collect Date/Time: 2/6/2018 18:00

Receive Date: 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Total Dissolved Solids (TDS)	SM 2540C	370	mg/L	1	10	2/13/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.4	mg/L	1	0.010	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.039	mg/L	1	0.010	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.62 M	mg/L	0.5	0.20	2/16/2018	NV00925

Customer Sample ID: YD@SBC(3)

WETLAB Sample ID: 1802250-012

Collect Date/Time: 2/7/2018 00:00

Receive Date: 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.047	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.079	mg/L	1	0.010	2/15/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	15	mg/L	1	1.0	2/12/2018	NV00925
Total Nitrogen	Calc.	2.3	mg/L	1	0.22	2/16/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	380	mg/L	1	10	2/13/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.5	mg/L	1	0.010	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.043	mg/L	1	0.010	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.79	mg/L	0.5	0.20	2/16/2018	NV00925

Customer Sample ID: YD@SBC(4) **Collect Date/Time:** 2/7/2018 06:00

WETLAB Sample ID: 1802250-013

Receive Date: 2/7/2018 16:01

Method Results Units DF RLLabID Analyte Analyzed **General Chemistry** Orthophosphate, as P SM 4500-P E 0.060 mg/L 1 0.010 2/7/2018 NV00925 Total Phosphorous as P SM 4500-P E 0.096 0.010 NV00925 mg/L2/15/2018 40 Total Suspended Solids (TSS) SM 2540D 1.0 2/13/2018 NV00925 mg/L 2.2 Total Nitrogen Calc. mg/L 0.22 2/16/2018 NV00925 Total Dissolved Solids (TDS) SM 2540C 360 1 10 2/13/2018 NV00925 mg/L **Anions by Ion Chromatography** 1.5 0.010 Nitrate Nitrogen EPA 300.0 1 2/7/2018 NV00925 mg/L Nitrite Nitrogen 0.042 mg/L 0.010 EPA 300.0 1 2/7/2018 NV00925 **Flow Injection Analyses** Total Kjeldahl Nitrogen EPA 351.2 0.74 mg/L0.5 0.20 2/16/2018 NV00925 WETLAB Sample ID:

Customer Sample ID: SBC@CWW(1)

1802250-014

Collect Date/Time: 2/6/2018 12:00

Receive Date: 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.19	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.20	mg/L	1	0.010	2/15/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	32	mg/L	1	1.0	2/12/2018	NV00925
Total Nitrogen	Calc.	1.1	mg/L	1	0.22	2/16/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	340	mg/L	1	10	2/13/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.34	mg/L	1	0.010	2/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.012	mg/L	1	0.010	2/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.70	mg/L	0.5	0.20	2/16/2018	NV00925

Customer Sample ID: SBC@CWW(2)

WETLAB Sample ID: 1802250-015

Collect Date/Time: 2/6/2018 18:00

Receive Date: 2/7/2018 16:01

	•					
Method	Results	Units	DF	RL	Analyzed	LabID
SM 4500-P E	0.20	mg/L	1	0.010	2/7/2018	NV00925
SM 4500-P E	0.20	mg/L	1	0.010	2/15/2018	NV00925
SM 2540D	38	mg/L	1	1.0	2/12/2018	NV00925
Calc.	1.1	mg/L	1	0.22	2/16/2018	NV00925
SM 2540C	330	mg/L	1	10	2/13/2018	NV00925
EPA 300.0	0.34	mg/L	1	0.010	2/8/2018	NV00925
EPA 300.0	0.012	mg/L	1	0.010	2/8/2018	NV00925
EPA 351.2	0.76	mg/L	0.5	0.20	2/16/2018	NV00925
	SM 4500-P E SM 4500-P E SM 2540D Calc. SM 2540C EPA 300.0 EPA 300.0	SM 4500-P E 0.20 SM 4500-P E 0.20 SM 2540D 38 Calc. 1.1 SM 2540C 330 EPA 300.0 0.34 EPA 300.0 0.012	SM 4500-P E 0.20 mg/L SM 4500-P E 0.20 mg/L SM 2540D 38 mg/L Calc. 1.1 mg/L SM 2540C 330 mg/L EPA 300.0 0.34 mg/L EPA 300.0 0.012 mg/L	SM 4500-P E 0.20 mg/L 1 SM 4500-P E 0.20 mg/L 1 SM 2540D 38 mg/L 1 Calc. 1.1 mg/L 1 SM 2540C 330 mg/L 1 EPA 300.0 0.34 mg/L 1 EPA 300.0 0.012 mg/L 1	SM 4500-P E 0.20 mg/L 1 0.010 SM 4500-P E 0.20 mg/L 1 0.010 SM 2540D 38 mg/L 1 1.0 Calc. 1.1 mg/L 1 0.22 SM 2540C 330 mg/L 1 10 EPA 300.0 0.34 mg/L 1 0.010 EPA 300.0 0.012 mg/L 1 0.010	SM 4500-P E 0.20 mg/L 1 0.010 2/7/2018 SM 4500-P E 0.20 mg/L 1 0.010 2/15/2018 SM 2540D 38 mg/L 1 1.0 2/12/2018 Calc. 1.1 mg/L 1 0.22 2/16/2018 SM 2540C 330 mg/L 1 10 2/13/2018 EPA 300.0 0.34 mg/L 1 0.010 2/8/2018 EPA 300.0 0.012 mg/L 1 0.010 2/8/2018

Customer Sample ID: SBC@CWW(3) Collect Date/Time: 2/7/2018 00:00

WETLAB Sample ID: 1802250-016 **Receive Date:** 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.20	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.20	mg/L	1	0.010	2/15/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	31	mg/L	1	1.0	2/12/2018	NV00925
Total Nitrogen	Calc.	1.0	mg/L	1	0.22	2/16/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	350	mg/L	1	10	2/14/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.34	mg/L	1	0.010	2/8/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.012	mg/L	1	0.010	2/8/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.70	mg/L	0.5	0.20	2/16/2018	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 8 of 11

 $\textbf{Customer Sample ID:} \qquad \text{SBC@CWW}(4)$

WETLAB Sample ID: 1802250-017

Collect Date/Time: 2/7/2018 06:00

Receive Date: 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.21	mg/L	1	0.010	2/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.22	mg/L	1	0.010	2/15/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	27	mg/L	1	1.0	2/13/2018	NV00925
Total Nitrogen	Calc.	1.1	mg/L	1	0.22	2/16/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	320	mg/L	1	10	2/14/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.34	mg/L	1	0.010	2/8/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.012	mg/L	1	0.010	2/8/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.76	mg/L	0.5	0.20	2/16/2018	NV00925

Customer Sample ID: WETLAB Sample ID:

Blank

1802250-018

Collect Date/Time: 2/6/2018 08:40

Receive Date: 2/7/2018 16:01

Method	Results	Units	DF	RL	Analyzed	LabID
SM 4500-P E	ND	mg/L	1	0.010	2/7/2018	NV00925
SM 4500-P E	0.020	mg/L	1	0.010	2/15/2018	NV00925
SM 2540D	ND	mg/L	1	1	2/12/2018	NV00925
Calc.	ND	mg/L	1	0.22	2/16/2018	NV00925
SM 2540C	ND	mg/L	1	10	2/13/2018	NV00925
EPA 300.0	ND	mg/L	1	0.010	2/7/2018	NV00925
EPA 300.0	ND	mg/L	1	0.010	2/7/2018	NV00925
EPA 351.2	ND	mg/L	0.5	0.20	2/16/2018	NV00925
	SM 4500-P E SM 4500-P E SM 2540D Calc. SM 2540C EPA 300.0 EPA 300.0	SM 4500-P E ND SM 4500-P E 0.020 SM 2540D ND Calc. ND SM 2540C ND EPA 300.0 ND EPA 300.0 ND	SM 4500-P E ND mg/L SM 4500-P E 0.020 mg/L SM 2540D ND mg/L Calc. ND mg/L SM 2540C ND mg/L EPA 300.0 ND mg/L EPA 300.0 ND mg/L EPA 300.0 ND mg/L	SM 4500-P E ND mg/L 1 SM 4500-P E 0.020 mg/L 1 SM 2540D ND mg/L 1 Calc. ND mg/L 1 SM 2540C ND mg/L 1 EPA 300.0 ND mg/L 1 EPA 300.0 ND mg/L 1 EPA 300.0 ND mg/L 1	SM 4500-P E ND mg/L 1 0.010 SM 4500-P E 0.020 mg/L 1 0.010 SM 2540D ND mg/L 1 1 Calc. ND mg/L 1 0.22 SM 2540C ND mg/L 1 10 EPA 300.0 ND mg/L 1 0.010 EPA 300.0 ND mg/L 1 0.010	SM 4500-P E ND mg/L 1 0.010 2/7/2018 SM 4500-P E 0.020 mg/L 1 0.010 2/15/2018 SM 2540D ND mg/L 1 1 2/12/2018 Calc. ND mg/L 1 0.22 2/16/2018 SM 2540C ND mg/L 1 10 2/13/2018 EPA 300.0 ND mg/L 1 0.010 2/7/2018 EPA 300.0 ND mg/L 1 0.010 2/7/2018

Customer Sample ID: WC@OVH

WETLAB Sample ID: 1802250-019

Collect Date/Time: 2/7/2018 10:32

Receive Date: 2/7/2018 16:01

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Microbiological Analyses							
Total Coliform (MPN)	SM 9223B (Quantitray)	>2419.6	MPN/100ml	1	1.0	2/7/2018	NV00925
Escherichia Coli (MPN)	SM 9223B (Quantitray)	21.8	MPN/100ml	1	1.0	2/7/2018	NV00925

Western Environmental Testing Laboratory QC Report

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC18020208	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L
		Nitrite Nitrogen	EPA 300.0	ND			mg/L
QC18020209	Blank 1	Orthophosphate, as P	SM 4500-P E	ND			mg/L
QC18020209	Blank 2	Orthophosphate, as P	SM 4500-P E	ND			mg/L
QC18020260	Blank 1	Total Coliform (MPN)	SM 9223B (Qu	ND			MPN/100ml
		Escherichia Coli (MPN)	SM 9223B (Qu	ND			MPN/100ml
QC18020404	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L
QC18020424	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L
QC18020425	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L
QC18020456	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC18020461	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC18020463	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC18020465	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L
QC18020474	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L
QC18020547	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L
QC18020564	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC18020208	LCS 1	Nitrate Nitrogen	EPA 300.0	0.472	0.500	94	mg/L
		Nitrite Nitrogen	EPA 300.0	0.477	0.500	95	mg/L
QC18020209	LCS 1	Orthophosphate, as P	SM 4500-P E	0.272	0.250	109	mg/L
QC18020209	LCS 2	Orthophosphate, as P	SM 4500-P E	0.267	0.250	107	mg/L
QC18020404	LCS 1	Total Phosphorous as P	SM 4500-P E	0.268	0.250	107	mg/L
QC18020424	LCS 1	Total Suspended Solids (TSS)	SM 2540D	199	200	99	mg/L
QC18020424	LCS 2	Total Suspended Solids (TSS)	SM 2540D	199	200	100	mg/L
QC18020425	LCS 1	Total Suspended Solids (TSS)	SM 2540D	200	200	100	mg/L
QC18020425	LCS 2	Total Suspended Solids (TSS)	SM 2540D	199	200	100	mg/L
QC18020456	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	149	150	99	mg/L
QC18020456	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	142	150	95	mg/L
QC18020461	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	151	150	101	mg/L
QC18020461	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	142	150	95	mg/L
QC18020463	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	138	150	92	mg/L
QC18020463	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	142	150	95	mg/L
QC18020465	LCS 1	Total Suspended Solids (TSS)	SM 2540D	196	200	98	mg/L
QC18020465	LCS 2	Total Suspended Solids (TSS)	SM 2540D	199	200	99	mg/L
QC18020474	LCS 1	Total Phosphorous as P	SM 4500-P E	0.279	0.250	112	mg/L
QC18020547	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	1.02	1.00	102	mg/L
QC18020564	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	164	150	109	mg/L
QC18020564	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	137	150	91	mg/L
				Dunlianto	Comple	Dunlingto	

				Duplicate	Sample	Duplicate		
QCBatchID	QCType	Parameter	Method	Sample	Result	Result	Units	RPD
QC18020424	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1802143-001	944	952	mg/L	1 %
QC18020424	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1802191-004	1.00	1.00	mg/L	<1%
QC18020425	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1802250-015	38.4	38.0	mg/L	1 %
QC18020425	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1802213-002	1.67	1.33	mg/L	22 %
QC18020456	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1802250-001	1200	1194	mg/L	1 %

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 10 of 11

QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result		Units	RPD
QC18020456	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1802250-002	1168	1144		mg/L	2 %
QC18020461	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1802250-012	380	374		mg/L	2 %
QC18020461	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1802250-015	334	335		mg/L	<1%
QC18020463	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1802250-013	362	372		mg/L	3 %
QC18020465	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1802213-001	340	290	QD	mg/L	16 %
QC18020465	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1802284-002	94.0	94.0		mg/L	<1%
QC18020564	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1802284-003	423	439		mg/L	4 %
QC18020564	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1802308-001	602	638		mg/L	6 %

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC18020208 MS 1	Nitrate Nitrogen	EPA 300.0	1802250-009	0.821		1.36	1.36	0.5	mg/L	107	108	<1
	Nitrite Nitrogen	EPA 300.0	1802250-009	0.016		0.135	0.135	0.125	mg/L	96	96	<1
QC18020208 MS 2	Nitrate Nitrogen	EPA 300.0	1802250-014	0.342		0.873	0.879	0.5	mg/L	106	107	<1
	Nitrite Nitrogen	EPA 300.0	1802250-014	0.012		0.128	0.129	0.125	mg/L	93	94	<1
QC18020209 MS 1	Orthophosphate, as P	SM 4500-P E	1802191-004	0.014		0.274	0.278	0.25	mg/L	104	106	1
QC18020209 MS 2	Orthophosphate, as P	SM 4500-P E	1802250-006	0.173		0.435	0.435	0.25	mg/L	105	105	<1
QC18020209 MS 3	Orthophosphate, as P	SM 4500-P E	1802250-016	0.203		0.449	0.464	0.25	mg/L	99	105	3
QC18020404 MS 1	Total Phosphorous as P	SM 4500-P E	1802250-001	0.141	M	0.321	0.306	0.25	mg/L	NC	NC	NC
QC18020404 MS 2	Total Phosphorous as P	SM 4500-P E	1802366-001	0.032		0.284	0.284	0.25	mg/L	101	101	<1
QC18020474 MS 1	Total Phosphorous as P	SM 4500-P E	1802250-011	0.094		0.334	0.355	0.25	mg/L	96	104	6
QC18020474 MS 2	Total Phosphorous as P	SM 4500-P E	1802250-012	0.079		0.315	0.322	0.25	mg/L	94	97	2
QC18020547 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1802250-001	1.07		1.52	1.59	0.5	mg/L	91	104	4
QC18020547 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1802250-011	0.620	M	1.19	1.22	0.5	mg/L	NC	NC	NC

	izing in Soil, Hazardous Waste and Water Ana	WETLAB Order ID. 1802-250 Sparks Control # Elko Control #
	ks, Nevada 89431 www.WETLaboratory.com	LV Control #
tel (775) 355-0202 fex (7 1084 Lamoille Highway Elko,		Report
tel (775) 777-9933 1 fax (7		Due Date
3230 Polaris Ave., Suite 4 I Las V		Page & of 3
tel (702) 475-8899 I fax (7	02) 776-6152	Page of
Client Balance Hydro	logic 5	Standard
Address 12020 Donate	Pass Rd StB1	5 Day* (25%) 72 Hour* (50%)
City, State & Zip Truckee	A 96161	48 Hour* (100%) 24 Hour* (200%)
contact Brian Hastins		Samples Collected From Report Results Via Which State?
Phone 530 - 550 - 9776	Collector's Name	NVCA Other
Fax	PWS/Project Name	Yes No Other
P.O. Number	PWS/Project Number 213136	Report to Regulatory Agency? Standard QC Required? Yes No Yes No
Email WASSTURE W ON	MILE LOVE COM S NO.	o. Analyses Requested
Billing Address (if different	than Client Address) A OF	1 1802
Company Balance Hydr	olegics M o	
Address 600 Bancroff	Wax 9+101 _ 1 N	: 1
City, State & Zip Barkeley C	A 94710 E A	
Contact Rachel Buitar	<u> </u>	
Phone 510-704-1000 Fa	ax Y N	
Email Moitanow balan	ACCINYATO CONS PRES	1119.0111111111111111111111111111111111
SAMPLE ID/LOCATION	DATE TIME PRES E R	
	2//	
NTO @ BFO (1)	2/6/19/12:00 A/6 Z	~
NTD@BFD(1) NTD@BFD(2)	26/19/12:00 AC 2	
NTD@BFO(1) NTD@BFO(2) NTD@BFO(3)		2 X X X X X 2
NTD@BFD(1) NTD@BFD(2) NTD@BFD(3) NTD@BFD(4)	2614 18:00 AC 2	2 X X X X X 2
NTD@BFD(1) NTD@BFD(2) NTD@BFD(3) NTD@BFD(4) NTD@ORD	26/18/18:00 AC 2 27/18 0:00 AC 2	2
NTD@BFD(1) NTD@BFD(2) NTD@BFD(3) NTD@BFD(4) NTD@ORD NTD@NEP	26/18/18:00 Ay 2 27/18 0:00 Ay 2 2/7/18/6:00 Ay 2	2
NTD@BFD(1) NTD@BFD(3) NTD@BFD(4) NTD@ORD NTD@NEP AC@TR	26/18/18:00 Ay 2 27/18 0:00 Ay 2 2/7/18/6:00 Ay 2 2/7/18/11:10 Ay 2	2

Instructions/Comments/Special Requirements:

Sample Matrix Key** DW = Drinking Water WW = Wastewater SW = Surface Water MW = Monitoring Well SD = Solid/Sludge SO = Soil HW = Hazardous Waste OTHER:

SAMPLE PRESERVATIVES: 1=Unpreserved 2=H2SO4 3=NaOH 4=HCI 5=HNO3 6=Na2S2O3 7=ZnOAc+NaOH 8=HCI/VOA Vial

ı	Temp	Cu	stoc	ly Seal	Containers	DATE	TIME	Samples Relinquished By	Samples Received By
	4.9°c	Υ	N	None	19	2/7/18	4:01		His fellison
	°C	Υ	N	None		111		7	4000
l	°C	Υ	N	None					
	°C	Υ	N	None					

WETLAB'S Standard Terms and Conditions apply unless written agreements specify otherwise. Payment terms are Net 30.

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or interntionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636).

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

WETLAB will dispose of samples 90 days from sample receipt. Client may request a longer sample storage time for an additional fee. Please contact your Project Manager for details.

WETLAB WESTERN ENVIRONMENTAL TESTING LABORATORY
AZE E Come Street #44

Specializing in Soil, Hazardous Waste and Water Analysis.

Greg Street #119 | Sparks, Nevada 89431 | www.WETLaboratory.com

tel (775) 355-0202 I fax (775) 355-0817

1084 Lamoille Highway I Elko, Nevada 89801 tel (775) 777-9933 I fax (775) 777-9933

WETLAB Order ID. 1802250
Sparks Control #
Elko Control #
LV Control #
Report
Due Date
-

					Page	<u> </u>	1_	of	3									
Client			-						-		1	Turnar	ound T	me Rec	ulren	ents	-	, - 1 , 1
Address									5 Da	ay* (25°	%)		ndard		ur* (50	—)%)		
City, State	e & Zip								48 H	lour* (1	100%) .	*5	Surchan	24 Ho	ur (20 Apply)0%) _		
Contact			-			-			7	Sample W	s Colle		From			port R	suits	Via
Phone			Collecto	or's Name						NV_	Other_		_					
Fax				roject Nan		•	_		Compliance Monitoring? PDF Yes No Other						EDD			
P.O. Num	nher			roject Nun	_	-			Report to Regulatory Agency? Standard Yes No Yes						ard Q	C Req		
Email	1007					_	s	NO. OF			, . <u>. 4</u>		yses			THE RESERVE AND ADDRESS.		
	Billing Address (if different than Cilent Address)									- [- [- [- [18	02	6 7
Compar	Company									-				1		10	בת	19
	Address										L			1		16	50	- J1
-	ate & Zip						E	TA		10	1	4	1	Ι.		-		
							T	N	$\parallel \rfloor \Box$	9-	15	} .	1			١,		$ \ \ $
Email			rax	·· ·· ·· ·			Y	E	_{5	0/6	0470	15	\mathcal{K}^{\prime}		- 1	- 1		
	SAMPL	E ID/LOCAT	ION	DATE	TIME	PRES TYPE	E **	R		19	0	Ĥ	H	- [- [- 1	- 1	Spl. No.
YDA)5BC (1)	- Communication - Alternation		2/6/18	12:00		A	2	X	X	X	V	<u>v</u>				1	10
 	SBC (Z))			14:00		La)	2	X	X	X	X	X		1			- In
	9BC (3))		7. (.	0:00		I	2	X	Ž,	1	X	X					12
	SBC (4))	-	2/7/18	6:00			2	X	Ϋ́	K	X	X				1	13
•	@ CWW			1771.			17	2	X	K	X	$\langle r \rangle$	R				Ī	14
	@ CWW (2/6/14	18'.00			2	X	X	XI.	X	ΧĪ					15
	a cwn (Allo	0:00			2	X	X	X	X	X					16
536	@ CWW ((4)		2/7/18	6:00			7	ľX	X	X	X	X					17
Bla	مآد				6:40			7	义	X	X	X	X					18
nstructions	s/Comments/Specia	al Requiremen	ts:	• •					•	·		` 	(
Sample M	latrix Key** DW =	Drinking Water W	W = Wastewater	SW = Surfac	e Water MW	= Monitoring	Well S	SD = S	olid/Slu	dge Si	0 = So	ii HW	= Haza	rdous V	Vaste	OTHE	R:	
SAMPLE	E PRESERVAT		preserved 2	2=H2SO4	3=NaOH	4=HCI	5=H	NO3	6=N	a2S2	203	7=Zr	1OAc	+NaC	H 8	=HC	I/VC	A Vial
	Custody Seal	# of Containers	DATE	TIME	San	nples Re	ling	uish	e q \B	y	,	sac	Sam	p)eg	Rec	eive	d By	,
4.8c	Y N None	(8	2/7/18	4:01		2/			<u> </u>	\geq	\bigoplus		JO.	1	U	<u>U</u> .	<u> </u>	2
℃	Y N None										1_			<u> </u>				_
°C	Y N None																	
°c	Y N None																	
WETLA	AB'S Standard	Terms and (Conditions :	apply un	less writt	len agre	eme	nts s	peci	fy ot	herw	/ise.	Payı	nent	tern	ns a	re N	et 30.
																_		

WETLAB
WESTERN ENVIRONMENTAL TESTING LABORATORY
4=== = 0

Specializing in Soil, Hazardous Waste and Water Analysis.

175 E. Greg Street #119 | Sparks, Nevada 89431 | www.WETLaboratory.com

tel (775) 355-0202 I fax (775) 355-0817

1084 Lamoille Highway I Elko, Nevada 89801
tel (775) 777-9933 I fax (775) 777-9933

3230 Polaris Ave., Suite 4 I Las Vegas, Nevada 89102
tel (702) 475-8899 I fax (702) 776-6152

WETLAB Order ID. 1802250
Sparks Control #
Elko Control #
LV Control #
Report
Due Date

ve:	(702) 473-0035 1	IGA (70E) 770	-0105					E		aye _				7 83 48	on the same	4.2 4.2	
Client	<u></u>						_	i i		a Production July Roads	around	de la fidencia de la companya de la	and the property				
Address								Standard 72 Hour* (50%)									_
City, State & Zip										1961		24	Hour* (2	00%1			-
Contact					-			S	mples Whi	Collected ch State					tesults	Vļa	
Phone		Collecte	or's Name			-			NV CA Other								
Fax			roject Nam	20				Compliance Monitoring? Yes No						•	EDD		
			_					Repo	ort to Re	gulatory	Agenc			dard C	C Req		2
P.O. Number		PVV5/P	roject Num	tber		S	NŌ.		Yes		No alyse	s Re	Yes gueš	ted	N	lo	
Email Billing	Address (if diffe	rent than C	lient Add	ress)		Ā	OF		T	T		Ī	Ī	Ī	T	T	\neg
Company		- Total Control of the Control of th	eningsproces of could be block operations.	Time Topic Company of the Company of		M P	0		1	II				- [-		-/
Address						Ŀ	N	-	1	1-1		- [1	- [
				-		E	A		1			1	180	12	6		II
						T	Ì	1:	ΙI	- 1	-	1			40	1	$I \mid$
		Fax				Y	N E	1 a	'				125	Û	19		$I \mid$
Email	AMPLE ID/LOCAT	ION	DATE	TME	PRES TYPE	P	R			-			17	7			Spl.
_				- income come come in the second	hann marks mod Miss. 12 tours	**	S	1	+	+	\vdash	-	+	\dashv	\dashv		No.
MC @ OV	<u>'H</u>		47418	10:32		Ap	Ш	1	_	+	-		_	-	_		P
						Ļ		_ _	_		_		_	_		_	
								_	_ _				_				
		<u>.</u>															
									1	1				一	T	T	
					· · ·				_	+			_	寸	+		
landario de la companya de la compa	alformatic Description		L		<u> </u>						<u> </u>				L	L	\dashv
Instructions/Comment	s/Special Requiremen	ts:															
	DW - D-J-1: W. 19	DAL = 144 - 14	CW	- 14/-4- B#14/	- M P 2	144-11 5	•D == =			- 0-" 1"	M = · ·		. 147	OT:	•••		
Sample Matrix Key**	DW = Drinking Water W																=
SAMPLE PRESE		 								JJ /=2			-				ıaı
Temp Custody	Containers	DATE	TIME	San	nples Ro	ling	uishi	eo By	\supset	- 0	San	nples	Rec	eive	d By	<u>'</u>	\dashv
100	lone) \	2/7/18	4:01		7		/	\mathcal{I}			A	Œ	μl	丛	1		<u>. </u>
	lone .																
<u> </u>	lone																
	lone	L.,	<u> </u>		Tax Tax 1			•			vita, a	12 15 TH	way was		4,+4		_
WETLAB'S Star	dard Terms and	Conditions	apply un	less writ	ten agre	emei	nts s	pecif	y oth	erwise	. Pay	/mer	it ter	ms a	re N	et 3	0.

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636).

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation procedure, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

WETLAB will dispose of samples 90 days from sample receipt. Client may request a longer sample storage time for an additional fee. Please contact your Project Manager for details. _____initial

1803429

Specializing in Soil, Hazardous Waste and Water Analysis

OrderID:

3/28/2018

Balance Hydrologics 800 Baucroft Ave. Suite 101 Berkeley, CA 94710

Attn: Brian Hastings

Dear: Brian Hastings

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 3/14/2018. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Jennifer Delaney QA Specialist

Western Environmental Testing Laboratory Report Comments

Balance Hydrologics - 1803429

Specific Report Comments

None

Report Legend

В	 Blank contamination; Analyte detected above the method reporting limit in an associated blank
D	 Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT	 Sample analyzed beyond the accepted holding time
J	 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
M	 The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance criteria due to probable matrix interference. The reported result should be considered an estimate.
N	 There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC	 Not calculated due to matrix interference
QD	 The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL	 The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
S	 Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC	 Spike recovery not calculated. Sample concentration >4X the spike amount; therefore, the spike could not be adequately recovered
U	 The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B:

A result of zero (0) indicates absence for both coliform and Escherichia coli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolved Oxygen, Sulfite.

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

Western Environmental Testing Laboratory Analytical Report

Balance HydrologicsDate Printed:3/28/2018800 Baucroft Ave. Suite 101OrderID:1803429

Berkeley, CA 94710
Attn: Brian Hastings

Phone: (510-704-1000 **Fax:**

PO\Project: 213136

 Customer Sample ID:
 CC@CB
 Collect Date/Time:
 3/13/2018
 16:52

 WETLAB Sample ID:
 1803429-001
 Receive Date:
 3/14/2018
 08:29

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.35	mg/L	1	0.010	3/14/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.43	mg/L	1	0.010	3/19/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	64	mg/L	1	1.0	3/15/2018	NV00925
Total Nitrogen	Calc.	3.3	mg/L	1	0.30	3/21/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	2400	mg/L	1	10	3/20/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	2.2	mg/L	5	0.050	3/14/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND D	mg/L	5	0.050	3/14/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.0 M	mg/L	0.5	0.20	3/21/2018	NV00925

 Customer Sample ID:
 TC@SMP
 Collect Date/Time:
 3/13/2018
 18:00

 WETLAB Sample ID:
 1803429-002
 Receive Date:
 3/14/2018
 08:29

Analyte Method Results Units DF RL Analyzed LabID

General Chemistry

Orberthere as P. SM 4500 P.F. 0.040 prof. [Conf. or F. Market P. M

General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.040	mg/L	1	0.010	3/14/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.059	mg/L	1	0.010	3/19/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	8	mg/L	1	1	3/15/2018	NV00925
Total Nitrogen	Calc.	ND	mg/L	1	0.22	3/21/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	95	mg/L	1	10	3/20/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	ND	mg/L	1	0.010	3/14/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	3/14/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	ND	mg/L	0.5	0.20	3/21/2018	NV00925

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

Western Environmental Testing Laboratory QC Report

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC18030512	Blank 1	Orthophosphate, as P	SM 4500-P E	ND			mg/L
QC18030525	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L
		Nitrite Nitrogen	EPA 300.0	ND			mg/L
QC18030614	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L
QC18030652	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L
QC18030749	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L
QC18030766	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC18030512	LCS 1	Orthophosphate, as P	SM 4500-P E	0.270	0.250	108	mg/L
QC18030525	LCS 1	Nitrate Nitrogen	EPA 300.0	0.495	0.500	99	mg/L
		Nitrite Nitrogen	EPA 300.0	0.482	0.500	96	mg/L
QC18030614	LCS 1	Total Suspended Solids (TSS)	SM 2540D	198	200	99	mg/L
QC18030614	LCS 2	Total Suspended Solids (TSS)	SM 2540D	198	200	99	mg/L
QC18030652	LCS 1	Total Phosphorous as P	SM 4500-P E	0.247	0.250	99	mg/L
QC18030749	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	1.00	1.00	100	mg/L
QC18030766	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	162	150	108	mg/L
QC18030766	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	162	150	108	mg/L

		_		Duplicate	Sample	Duplicate		
QCBatchID	QCType	Parameter	Method	Sample	Result	Result	Units	RPD
QC18030614	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1803372-001	176	182	mg/L	3 %
QC18030766	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1803397-001	208	205	mg/L	1 %
QC18030766	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1803431-007	13180	13390	mg/L	2 %

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC18030512 MS 1	Orthophosphate, as P	SM 4500-P E	1803429-001	0.354		0.588	0.573	0.25	mg/L	94	88	3
QC18030525 MS 1	Nitrate Nitrogen	EPA 300.0	1803429-002	ND		0.493	0.484	0.5	mg/L	99	97	2
	Nitrite Nitrogen	EPA 300.0	1803429-002	ND		0.109	0.106	0.125	mg/L	87	85	3
QC18030525 MS 2	Nitrate Nitrogen	EPA 300.0	1803435-005	ND		0.497	0.504	0.5	mg/L	98	100	1
	Nitrite Nitrogen	EPA 300.0	1803435-005	ND		0.110	0.110	0.125	mg/L	88	88	<1
QC18030652 MS 1	Total Phosphorous as P	SM 4500-P E	1803397-001	0.652		0.870	0.866	0.25	mg/L	87	86	<1
QC18030652 MS 2	Total Phosphorous as P	SM 4500-P E	1803435-003	0.035		0.284	0.287	0.25	mg/L	100	101	1
QC18030749 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1803429-001	1.03	M	1.42	1.32	0.5	mg/L	NC	NC	NC
QC18030749 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1803623-001	ND		0.570	0.525	0.5	mg/L	100	91	8

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

^						-			\top				100	21	170	7
A WET	LAB								_	ab Nun	nber	/	80)	10	-
WESTERN ENVI	RONMENTAL BORATORY Speci	alizing in S	oil, Haza	rdous Wa	ste and V	Vater	Ana	lysis.		eport ue Dat	е					
	Street #119 Spa										ſ		1			
	5-0202 fax (775) e Hwy Elko, Neva								P	age		_ of _				
tel (775) 777	7-9933 I fax (775)	777-9933	I www.	WETLabora	tory.com						andard	Time R	Requirem	ents		
Client Balance	Hydrdoa	14							5-Day*_	31	andard	3	3-Day*			
Address 12520	Donner	Dal	5 1	2	Suite	BI	/		48 Hour*		*Surch		24 Hour*_ /ill Apply			-
4	nekee.	14	al	161	744			S	amples (Collected	From	argos vi		ort Resu	Its Via	
P -:	11.11.		76	101					NV CA Other					Fax Mail Only		
Contact DVIAN	Mastings	1		3 T	_			(omplian	ce Monit			PDF	ED	D	
Phone 530-550	1-9FT6	Collecto	r's Name	37		-	-	Rep	Yes ort to Re	gulatory	No Agenc		Other:	rd QC R	equired	?
Fax			oject Nar		,		1988		Yes		No		Yes		No	
P.O. Number		PWS/Pr	oject Nur	mber Zi	3136	,										
Email Whastin				tro.c	om	S	NO. OF	T	-	Ana	llyse	s Re	queste	ed	1 1	
	dress (If differen		ient Add	dress)		A	01			11						
Company Bala	- 61	rolog		/		MP	C							11		
Address 400 f	Saucroft	1 by	1171	itelo		L	ON					1	M			
Contact Rache	1' - (')	NO	TTI			E	Т				1	1	Ĭ,			
Phone 510- 7	04-1000		136			Т	A	12	61				7 1			
Fax			,			Y	N	1		91	1	1				
Email 1001 tau	no (w bo	lauce	hyde	0.600	1	P	E	1	13	2 h	10	1.	1 1	-		
SAMP	LE ID/LOCATIO			DATE	TIME	E	R	10	120	71	1	1				Spl. No.
1.100	3			2/12/2	16:52	A	2	V	VV	V	~	X				NO.
TIDE	uP			11/11		1	1	~		//	5					
100 30				3/19/18	18:00	M	V		XX	- >	/			-	1967	
														-		
											-				-	
						94			-	1000						76
				200			-			1803	2	-				
									-4	29	2					
				7						-/	7					
Instructions/Comments/Spe	cial Requirements:															
Sample Matrix/ Type Key**	= Drinking Water WW =	Wastewater S	SW = Surfac	e Water MW	= Monitoring	Well S	6 D = Se	olid/Slud	ge SO =	Soil HV	V = Haz	ardous	Waşte O	THER:_	/	_
SAMPLE RE	CEIPT	DATE	TIME	Sar	nples Re	linq	uish	ed By			San	ples	Rece	ived E	By /	
Temperature _	°C	3/4/18	0829	X.	MI	- /	hn	N		(X	1/2	1	1	1	
Custody Seals Intact?	Y N None		/			/				1	//	1	/			
Number of Containers	S								3	17	1	/				\exists
WETLAB'S Standard	Terms and Cor	nditions a	pply un	less writ	ten agre	emer	nts s	pecif	othe	rwise	Pay	men	t term	s are	Net 3	0.

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636).

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

1804282

Specializing in Soil, Hazardous Waste and Water Analysis

OrderID:

4/19/2018

Balance Hydrologics 800 Baucroft Ave. Suite 101 Berkeley, CA 94710

Attn: Brian Hastings

Dear: Brian Hastings

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 4/6/2018. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Jennifer Delaney QA Specialist

Western Environmental Testing Laboratory Report Comments

Balance Hydrologics - 1804282

Specific Report Comments

The results for Orthophosphate on samples 1804282-001 and 002 are higher than expected, especially when compared to Total Phosphorus results. It is thought that particulate matter contained in the samples interfered with the Orthophosphate analysis. Particulate matter interferes by deflecting the light used in the spectrophotometric method. The particulate matter did not interfere with the Total Phosphorus analysis since that procedure includes an acid digestion process.

Report Legend

Acport Dege	114	
В		Blank contamination; Analyte detected above the method reporting limit in an associated blank
D		Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT		Sample analyzed beyond the accepted holding time
J		The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
M		The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance criteria due to probable matrix interference. The reported result should be considered an estimate.
N		There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC		Not calculated due to matrix interference
QD		The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL		The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
S		Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC		Spike recovery not calculated. Sample concentration >4X the spike amount; therefore, the spike could not be adequately recovered
U		The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B:

A result of zero (0) indicates absence for both coliform and Escherichia coli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolved Oxygen, Sulfite.

Western Environmental Testing Laboratory Analytical Report

 Balance Hydrologics
 Date Printed:
 4/19/2018

 800 Baucroft Ave. Suite 101
 OrderID:
 1804282

Berkeley, CA 94710
Attn: Brian Hastings

Phone: (510-704-1000 Fax:

PO\Project: 213136

 Customer Sample ID:
 NTD@ORD
 Collect Date/Time:
 4/6/2018
 12:00

 WETLAB Sample ID:
 1804282-001
 Receive Date:
 4/6/2018
 16:25

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.32	mg/L	1	0.010	4/6/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.21	mg/L	1	0.010	4/12/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	45	mg/L	1	1.0	4/9/2018	NV00925
Total Nitrogen	Calc.	3.5	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	1000	mg/L	1	10	4/9/2018	NV00925
Flow Injection Analyses							
Nitrate + Nitrite Nitrogen	EPA 353.2	1.4	mg/L	1	0.020	4/11/2018	NV00925
Total Kjeldahl Nitrogen	EPA 351.2	2.0	mg/L	0.5	0.20	4/12/2018	NV00925

Balance Hydrologics - 1804282

Customer Sample ID: NTD@BFD(1) **Collect Date/Time:** 4/6/2018 11:30 WETLAB Sample ID: **Receive Date:** 4/6/2018 16:25 1804282-002

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.23	mg/L	1	0.010	4/6/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.14	mg/L	1	0.010	4/12/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	53	mg/L	1	1.0	4/9/2018	NV00925
Total Nitrogen	Calc.	3.4	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	710	mg/L	1	10	4/9/2018	NV00925
Flow Injection Analyses							
Nitrate + Nitrite Nitrogen	EPA 353.2	1.5	mg/L	1	0.020	4/11/2018	NV00925
Total Kjeldahl Nitrogen	EPA 351.2	1.9	mg/L	0.5	0.20	4/12/2018	NV00925

Western Environmental Testing Laboratory QC Report

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC18040298	Blank 1	Orthophosphate, as P	SM 4500-P E	ND			mg/L
QC18040399	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L
QC18040448	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L
QC18040501	Blank 1	Nitrate + Nitrite Nitrogen	EPA 353.2	ND			mg/L
QC18040524	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L
QC18040551	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L
QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC18040298	LCS 1	Orthophosphate, as P	SM 4500-P E	0.252	0.250	101	mg/L
QC18040399	LCS 1	Total Suspended Solids (TSS)	SM 2540D	200	200	100	mg/L

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC18040298	LCS 1	Orthophosphate, as P	SM 4500-P E	0.252	0.250	101	mg/L
QC18040399	LCS 1	Total Suspended Solids (TSS)	SM 2540D	200	200	100	mg/L
QC18040399	LCS 2	Total Suspended Solids (TSS)	SM 2540D	199	200	100	mg/L
QC18040448	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	144	150	96	mg/L
QC18040448	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	143	150	95	mg/L
QC18040501	LCS 1	Nitrate + Nitrite Nitrogen	EPA 353.2	0.774	0.800	97	mg/L
QC18040524	LCS 1	Total Phosphorous as P	SM 4500-P E	0.263	0.250	105	mg/L
QC18040551	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	1.00	1.00	100	mg/L

QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC18040399	Duplicate 1	Total Suspended Solids (TSS)	SM 2540D	1804180-001	265	275	mg/L	4 %
QC18040399	Duplicate 2	Total Suspended Solids (TSS)	SM 2540D	1804284-001	144	141	mg/L	2 %
QC18040448	Duplicate 1	Total Dissolved Solids (TDS)	SM 2540C	1804256-001	287	282	mg/L	2 %
QC18040448	Duplicate 2	Total Dissolved Solids (TDS)	SM 2540C	1804310-001	411	417	mg/L	1 %

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC18040298 MS 1	Orthophosphate, as P	SM 4500-P E	1804282-001	0.319		0.534	0.550	0.25	mg/L	86	92	3
QC18040501 MS 1	Nitrate + Nitrite Nitrogen	EPA 353.2	1804230-005	ND		5.38	5.56	1	mg/L	108	111	3
QC18040501 MS 2	Nitrate + Nitrite Nitrogen	EPA 353.2	1804279-002	0.068	M	1.17	1.18	1	mg/L	NC	NC	NC
QC18040524 MS 1	Total Phosphorous as P	SM 4500-P E	1804280-001	0.069		0.338	0.344	0.25	mg/L	108	110	2
QC18040524 MS 2	Total Phosphorous as P	SM 4500-P E	1804283-002	0.066	M	0.175	0.155	0.25	mg/L	NC	NC	NC
QC18040551 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1804280-001	0.118	J	0.585	0.580	0.5	mg/L	93	92	<1
QC18040551 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1804284-002	0.433		0.935	0.905	0.5	mg/L	100	94	3

WETLAB WESTERN ENVIRONMENTAL TESTING LABORATORY Special	izing in Soil, Hazardous Was	te and Water	Analysis	5.	Spark	LAB Ord	l#				2
475 E. Greg Street #119 Spari	cs, Nevada 89431 I www.WE	TLaboratory.co	m	-	Elko (Control #					
tel (775) 355-0202 I fax (7	-	•				ontrol#_					
1084 Lamoille Highway I Elko,					Repo						
tel (775) 777-9933 I fax (7 3230 Polaris Ave., Suite 4 I Las V	•			l	Due [Jate					
tel (702) 475-8899 fax (7					Page		of				
Client Balance Hydrolo	ouics				ী	umaround:	Time Reg	ulremen	lb		
Address 12020 Donner	Pass Rd	Sule E	ء ا رخ	Day* (25	%)	Standard .	72 Hou	r* (50%)			
City, State & Zip Truckee	CA 96/6/				-			r* (200%			
Contact Brian Hastin	5	-		Sample V	s Colle hich St	ted From	_	,	Results	Via.	
Phone 530. 550. 9776	Collector's Name	-		NV_	C/ Other	<u>-</u>					
Fax	PWS/Project Name			Compl Yes	ance M	onitoring? No	Oth	PDF er	EDD		
		7/	3	Report to	Regulat	ory Agency	71 U.S	tandard	QC Req		
P.O. Number	PWS/Project Number 213		NO	Yes		No Inalyse:		es cetos		Vo	
	ologics Naw suite 10 Y CA 9471(No Ncelnydro, co	A M P L S T Y P E T	002F<=Z	10th 1	71/5	155					Spl No.
NTOG ORD	4/6/18 12:00	Ag	2 X	[14]	XI.	44					1
NTO @ BFD (1)	46/12 11:30	AL	ZX	X	Ý.	XX					2
						i i					
					十	11	Ť	+-		\neg	
				╁┈╂	\dashv	\dashv	_	-	\vdash	\dashv	
				+		+	_	+	┦	_	
					<u> </u>						_
Instructions/Comments/Special Requirements:											

of Temp **Custody Seal** TIME Samples Relinquishe Containers None Ν None °C Ν None °C None Ν

SAMPLE PRESERVATIVES: 1=Unpreserved 2=H2SO4 3=NaOH 4=HCI 5=HNO3 6=Na2S2O3 7=ZnOAc+NaOH 8=HCI/VOA Vial

WETLAB'S Standard Terms and Conditions apply unless written agreements specify otherwise. Payment terms are Net 30.

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636). initial

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation page red, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted. WETLAB will dispose of samples 90 days from sample receipt. Client may request a longer sample storage time for an additional fee. Please contact your Project Manager for details.

301.2E

1804287

Specializing in Soil, Hazardous Waste and Water Analysis

OrderID:

4/19/2018

Balance Hydrologics 800 Baucroft Ave. Suite 101 Berkeley, CA 94710

Attn: Brian Hastings

Dear: Brian Hastings

This is to transmit the attached analytical report. The analytical data and information contained therein was generated using specified or selected methods contained in references, such as Standard Methods for the Examination of Water and Wastewater, online edition, Methods for Determination of Organic Compounds in Drinking Water, EPA-600/4-79-020, and Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods (SW846) Third Edition.

The samples were received by WETLAB-Western Environmental Testing Laboratory in good condition on 4/7/2018. Additional comments are located on page 2 of this report.

If you should have any questions or comments regarding this report, please do not hesitate to call.

Sincerely,

Andy Smith QA Manager

Elko, Nevada 89801 tel (775) 777-9933

fax (775) 777-9933

EPA LAB ID: NV00926

Western Environmental Testing Laboratory Report Comments

Balance Hydrologics - 1804287

Specific Report Comments

The results for Orthophosphate on samples 1804287-003, 004, 005, 006, 008, 009, 011, and 012 are higher than expected, especially when compared to Total Phosphorus results. It is thought that particulate matter contained in the samples interfered with the Orthophosphate analysis. Particulate matter interferes by deflecting the light used in the spectrophotometric method. The particulate matter did not interfere with the Total Phosphorus analysis since that procedure includes an acid digestion process.

Report Legend

Report Lege	114	
В		Blank contamination; Analyte detected above the method reporting limit in an associated blank
D		Due to the sample matrix dilution was required in order to properly detect and report the analyte. The reporting limit has been adjusted accordingly.
HT		Sample analyzed beyond the accepted holding time
J		The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
M		The matrix spike/matrix spike duplicate (MS/MSD) values for the analysis of this parameter were outside acceptance criteria due to probable matrix interference. The reported result should be considered an estimate.
N		There was insufficient sample available to perform a spike and/or duplicate on this analytical batch.
NC		Not calculated due to matrix interference
QD		The sample duplicate or matrix spike duplicate analysis demonstrated sample imprecision. The reported result should be considered an estimate.
QL		The result for the laboratory control sample (LCS) was outside WETLAB acceptance criteria and reanalysis was not possible. The reported data should be considered an estimate.
S		Surrogate recovery was outside of laboratory acceptance limits due to matrix interference. The associated blank and LCS surrogate recovery was within acceptance limits
SC		Spike recovery not calculated. Sample concentration $>4X$ the spike amount; therefore, the spike could not be adequately recovered
U		The analyte was analyzed for, but was not detected above the level of the reported sample reporting/quantitation limit

General Lab Comments

Per method recommendation (section 4.4), Samples analyzed by methods EPA 300.0 and EPA 300.1 have been filtered prior to analysis.

The following is an interpretation of the results from EPA method 9223B:

A result of zero (0) indicates absence for both coliform and Escherichia coli meaning the water meets the microbiological requirements of the U.S. EPA Safe Drinking Water Act (SDWA). A result of one (1) for either test indicates presence and the water does not meet the SDWA requirements. Waters with positive tests should be disinfected by a certified water treatment operator and retested.

Per federal regulation the holding time for the following parameters in aqueous/water samples is 15 minutes: Residual Chlorine, pH, Dissolved Oxygen, Sulfite.

Elko, Nevada 89801 tel (775) 777-9933

fax (775) 777-9933

EPA LAB ID: NV00926

Western Environmental Testing Laboratory Analytical Report

Balance Hydrologics Date Printed: 4/19/2018 800 Baucroft Ave. Suite 101 OrderID: 1804287

Berkeley, CA 94710 Attn: Brian Hastings

Phone: (510-704-1000 Fax:

PO\Project: 213136

Customer Sample ID: AC@TR **Collect Date/Time:** 4/7/2018 07:59

WETLAB Sample ID: 1804287-001 Receive Date: 4/7/2018 12:35

A 14	Mala	D 14	TI *4.	DE	DI	4 1 1	T. LTD.
Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	ND	mg/L	1	0.010	4/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.059	mg/L	1	0.010	4/12/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	390	mg/L	1	1.0	4/10/2018	NV00925
Total Nitrogen	Calc.	1.2	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	210	mg/L	1	10	4/11/2018	NV00925
Microbiological Analyses							
Total Coliform (MPN)	SM 9223B (Quantitray)	1011.2	MPN/100ml	1	1.0	4/7/2018	NV00925
Escherichia Coli (MPN)	SM 9223B (Quantitray)	344.1	MPN/100ml	1	1.0	4/7/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.062	mg/L	1	0.010	4/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.013	mg/L	1	0.010	4/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.1	mg/L	0.5	0.20	4/12/2018	NV00925

Customer Sample ID: AC@MCC **Collect Date/Time:** 4/7/2018 08:30 **WETLAB Sample ID:**

1804287-002 **Receive Date:** 4/7/2018 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	ND	mg/L	1	0.010	4/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.083	mg/L	1	0.010	4/12/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	370	mg/L	1	1.0	4/10/2018	NV00925
Total Nitrogen	Calc.	1.8	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	200	mg/L	1	10	4/11/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.068	mg/L	1	0.010	4/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.017	mg/L	1	0.010	4/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.7	mg/L	0.5	0.20	4/12/2018	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933

Customer Sample ID: YD@SBC(1)

WETLAB Sample ID: 1804287-003

Collect Date/Time: 4/7/2018 10:00

Receive Date: 4/7/2018 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.075	mg/L	1	0.010	4/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.047	mg/L	1	0.010	4/12/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	68	mg/L	1	1.0	4/10/2018	NV00925
Total Nitrogen	Calc.	1.8	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	420	mg/L	1	10	4/11/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	1.1	mg/L	1	0.010	4/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.054	mg/L	1	0.010	4/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.70	mg/L	0.5	0.20	4/12/2018	NV00925

Customer Sample ID: SBC@CWW(1)

WETLAB Sample ID: 1804287-004

Collect Date/Time: 4/7/2018 10:15

Receive Date: 4/7/2018 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.23	mg/L	1	0.010	4/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.12	mg/L	1	0.010	4/12/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	530	mg/L	1	1.0	4/10/2018	NV00925
Total Nitrogen	Calc.	2.2	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	290	mg/L	1	10	4/11/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.47	mg/L	1	0.010	4/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	4/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.8	mg/L	0.5	0.20	4/12/2018	NV00925

Customer Sample ID: SBC@NAR Collect Date/Time: 4/7/2018 09:25

WETLAB Sample ID: 1804287-005 **Receive Date:** 4/7/2018 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.26	mg/L	1	0.010	4/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.13	mg/L	1	0.010	4/12/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	130	mg/L	1	1.0	4/10/2018	NV00925
Total Nitrogen	Calc.	1.4	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	280	mg/L	1	10	4/11/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.16	mg/L	1	0.010	4/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	4/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.2	mg/L	0.5	0.20	4/12/2018	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 4 of 10

Customer Sample ID: SBC@RHR Collect Date/Time: 4/7/2018 08:50

WETLAB Sample ID: 1804287-006 **Receive Date:** 4/7/2018 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
<u> </u>							
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.25	mg/L	1	0.010	4/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.14	mg/L	1	0.010	4/12/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	33	mg/L	1	1.0	4/10/2018	NV00925
Total Nitrogen	Calc.	1.4	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	200	mg/L	1	10	4/11/2018	NV00925
Microbiological Analyses							
Total Coliform (MPN)	SM 9223B (Quantitray)	1011.2	MPN/100ml	1	1.0	4/7/2018	NV00925
Escherichia Coli (MPN)	SM 9223B (Quantitray)	721.5	MPN/100ml	1	1.0	4/7/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.18	mg/L	1	0.010	4/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	4/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.2	mg/L	0.5	0.20	4/12/2018	NV00925

Customer Sample ID: BLANK Collect Date/Time: 4/6/2018 09:30

WETLAB Sample ID: 1804287-007 **Receive Date:** 4/7/2018 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	ND	mg/L	1	0.010	4/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	ND	mg/L	1	0.010	4/12/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	ND	mg/L	1	1	4/10/2018	NV00925
Total Nitrogen	Calc.	ND	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	ND	mg/L	1	10	4/11/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	ND	mg/L	1	0.010	4/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	4/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	ND	mg/L	0.5	0.20	4/12/2018	NV00925

 Customer Sample ID:
 NTD@BFD(2)
 Collect Date/Time:
 4/6/2018
 17:00

 WETLAB Sample ID:
 1804287-008
 Receive Date:
 4/7/2018
 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.22	mg/L	1	0.010	4/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.16	mg/L	1	0.010	4/12/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	48	mg/L	1	1.0	4/10/2018	NV00925
Total Nitrogen	Calc.	2.4	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	490	mg/L	1	10	4/11/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.88	mg/L	1	0.010	4/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	4/7/2018	NV00925

 $DF \hbox{=-}Dilution\ Factor,\ RL \hbox{=-}Reporting\ Limit,\ ND \hbox{=-}Not\ Detected\ or\ <\!RL$

Page 5 of 10

Balance Hydrologics - 1804287

Customer Sample ID: NTD@BFD(2)

WETLAB Sample ID: 1804287-008

Collect Date/Time: 4/6/2018 17:00

Receive Date: 4/7/2018 12:35

Analyte	Method	Resul	ts	Units	DF	RL	Analyzed	LabID
Flow Injection Analyses								
Total Kjeldahl Nitrogen	EPA 351.2	1.6	M	mg/L	0.5	0.20	4/12/2018	NV00925

Customer Sample ID: NTD@BFD(3) Collect Date/Time: 4/6/2018 18:30

WETLAB Sample ID: 1804287-009 **Receive Date:** 4/7/2018 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.20	mg/L	1	0.010	4/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.17 M	mg/L	1	0.010	4/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	46	mg/L	1	1.0	4/10/2018	NV00925
Total Nitrogen	Calc.	2.4	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	480	mg/L	1	10	4/11/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.94	mg/L	1	0.010	4/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	4/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.5	mg/L	0.5	0.20	4/12/2018	NV00925

Customer Sample ID: NTD@BFD(4) Collect Date/Time: 4/6/2018 21:30

WETLAB Sample ID: 1804287-010 **Receive Date:** 4/7/2018 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.17	mg/L	1	0.010	4/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.17	mg/L	1	0.010	4/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	42	mg/L	1	1.0	4/10/2018	NV00925
Total Nitrogen	Calc.	2.3	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	460	mg/L	1	10	4/11/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.97	mg/L	1	0.010	4/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	ND	mg/L	1	0.010	4/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	1.4	mg/L	0.5	0.20	4/12/2018	NV00925
				•			

Customer Sample ID: SDOE 008936 (1) **Collect Date/Time:** 4/6/2018 12:56

WETLAB Sample ID: 1804287-011 **Receive Date:** 4/7/2018 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.32	mg/L	1	0.010	4/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.27	mg/L	1	0.010	4/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	110	mg/L	1	1.0	4/10/2018	NV00925
Total Nitrogen	Calc.	3.3	mg/L	1	0.22	4/12/2018	NV00925

DF=Dilution Factor, RL=Reporting Limit, ND=Not Detected or <RL

Page 6 of 10

 $\textbf{Customer Sample ID:} \qquad \text{SDOE } 008936\ (1)$

WETLAB Sample ID: 1804287-011

Collect Date/Time: 4/6/2018 12:56

Receive Date: 4/7/2018 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Total Dissolved Solids (TDS)	SM 2540C	120	mg/L	1	10	4/11/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.48	mg/L	1	0.010	4/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.075	mg/L	1	0.010	4/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	2.7	mg/L	0.5	0.20	4/12/2018	NV00925

Customer Sample ID: SDOE 008936 (2)

WETLAB Sample ID: 1804287-012

Collect Date/Time: 4/6/2018 15:09

Receive Date: 4/7/2018 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.22	mg/L	1	0.010	4/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.19	mg/L	1	0.010	4/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	130	mg/L	1	1.0	4/10/2018	NV00925
Total Nitrogen	Calc.	3.0	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	120	mg/L	1	10	4/11/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	0.82	mg/L	1	0.010	4/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.058	mg/L	1	0.010	4/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	2.1	mg/L	0.5	0.20	4/12/2018	NV00925

Customer Sample ID: SDOE 008936 (3) **Collect Date/Time:** 4/6/2018 21:34

WETLAB Sample ID: 1804287-013

Receive Date: 4/7/2018 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
General Chemistry							
Orthophosphate, as P	SM 4500-P E	0.13	mg/L	1	0.010	4/7/2018	NV00925
Total Phosphorous as P	SM 4500-P E	0.23	mg/L	1	0.010	4/13/2018	NV00925
Total Suspended Solids (TSS)	SM 2540D	9	mg/L	1	1	4/10/2018	NV00925
Total Nitrogen	Calc.	3.8	mg/L	1	0.22	4/12/2018	NV00925
Total Dissolved Solids (TDS)	SM 2540C	340	mg/L	1	10	4/11/2018	NV00925
Anions by Ion Chromatography							
Nitrate Nitrogen	EPA 300.0	2.8	mg/L	1	0.010	4/7/2018	NV00925
Nitrite Nitrogen	EPA 300.0	0.067	mg/L	1	0.010	4/7/2018	NV00925
Flow Injection Analyses							
Total Kjeldahl Nitrogen	EPA 351.2	0.92	mg/L	0.5	0.20	4/12/2018	NV00925

Balance Hydrologics - 1804287

Customer Sample ID: SDOE 008936 (4)

WETLAB Sample ID: 1804287-014

Collect Date/Time: 4/7/2018 02:33

Receive Date: 4/7/2018 12:35

Analyte	Method	Results	Units	DF	RL	Analyzed	LabID	
General Chemistry								
Orthophosphate, as P	SM 4500-P E	0.12	mg/L	1	0.010	4/7/2018	NV00925	
Total Phosphorous as P	SM 4500-P E	0.12	mg/L	1	0.010	4/13/2018	NV00925	
Total Suspended Solids (TSS)	SM 2540D	46	mg/L	1	1.0	4/10/2018	NV00925	
Total Nitrogen	Calc.	2.4	mg/L	1	0.22	4/13/2018	NV00925	
Total Dissolved Solids (TDS)	SM 2540C	240	mg/L	1	10	4/11/2018	NV00925	
Anions by Ion Chromatography								
Nitrate Nitrogen	EPA 300.0	1.4	mg/L	1	0.010	4/7/2018	NV00925	
Nitrite Nitrogen	EPA 300.0	0.032	mg/L	1	0.010	4/7/2018	NV00925	
Flow Injection Analyses								
Total Kjeldahl Nitrogen	EPA 351.2	0.93 M	mg/L	0.5	0.20	4/13/2018	NV00925	

Western Environmental Testing Laboratory QC Report

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	e Units	
QC18040306	Blank 1	Orthophosphate, as P	SM 4500-P E	ND			mg/L	
QC18040338	Blank 1	Nitrate Nitrogen	EPA 300.0	ND			mg/L	
		Nitrite Nitrogen	EPA 300.0	ND			mg/L	
QC18040364	Blank 1	Total Coliform (MPN)	SM 9223B (Qu	ND			MPN/100	ml
		Escherichia Coli (MPN)	SM 9223B (Qu	ND			MPN/100	ml
QC18040523	Blank 1	Total Suspended Solids (TSS)	SM 2540D	ND			mg/L	
QC18040537	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L	
QC18040551	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L	
QC18040552	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L	
QC18040578	Blank 1	Total Dissolved Solids (TDS)	SM 2540C	ND			mg/L	
QC18040589	Blank 1	Total Phosphorous as P	SM 4500-P E	ND			mg/L	
QC18040603	Blank 1	Total Kjeldahl Nitrogen	EPA 351.2	ND			mg/L	
QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	e Units	
QC18040306	LCS 1	Orthophosphate, as P	SM 4500-P E	0.248	0.250	99	mg/L	
QC18040338	LCS 1	Nitrate Nitrogen	EPA 300.0	0.491	0.500	98	mg/L	
		Nitrite Nitrogen	EPA 300.0	0.500	0.500	100	mg/L	
QC18040523	LCS 1	Total Suspended Solids (TSS)	SM 2540D	198	200	99	mg/L	
QC18040523	LCS 2	Total Suspended Solids (TSS)	SM 2540D	198	200	99	mg/L	
QC18040537	LCS 1	Total Phosphorous as P	SM 4500-P E	0.258	0.250	103	mg/L	
QC18040551	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	1.00	1.00	100	mg/L	
QC18040552	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	0.990	1.00	99	mg/L	
QC18040578	LCS 1	Total Dissolved Solids (TDS)	SM 2540C	143	150	95	mg/L	
QC18040578	LCS 2	Total Dissolved Solids (TDS)	SM 2540C	139	150	93	mg/L	
QC18040589	LCS 1	Total Phosphorous as P	SM 4500-P E	0.279	0.250	112	mg/L	
QC18040603	LCS 1	Total Kjeldahl Nitrogen	EPA 351.2	0.970	1.00	97	mg/L	
QCBatchID	QCType	Parameter	Method	Duplicate Sample	Sample Result	Duplicate Result	Units	RPD
QC18040523	Duplicate 1	1 Total Suspended Solids (TSS)	SM 2540D	1804287-001	392	392	mg/L	<1%
QC18040523	Duplicate 2	2 Total Suspended Solids (TSS)	SM 2540D	1804287-011	112	114	mg/L	2 %
QC18040578	Duplicate 1	1 Total Dissolved Solids (TDS)	SM 2540C	1804287-001	207	206	mg/L	<1%
QC18040578	Duplicate 2	2 Total Dissolved Solids (TDS)	SM 2540C	1804287-010	460	471	mg/L	2 %
QCBatchID (QCType Pa	rameter Mo	Spike ethod Sample	Sample Result	MS Result	MSD Result	Spike Value Units	MS MSD RPD %Rec %Rec %

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC18040306 MS 1	Orthophosphate, as P	SM 4500-P E	1804287-001	ND		0.259	0.259	0.25	mg/L	100	100	<1
QC18040306 MS 2	Orthophosphate, as P	SM 4500-P E	1804287-011	0.318		0.553	0.560	0.25	mg/L	94	97	1
QC18040338 MS 1	Nitrate Nitrogen	EPA 300.0	1804287-003	1.05		1.59	1.60	0.5	mg/L	107	108	<1
	Nitrite Nitrogen	EPA 300.0	1804287-003	0.054		0.175	0.177	0.125	mg/L	97	99	1
QC18040338 MS 2	Nitrate Nitrogen	EPA 300.0	1804287-013	2.78		3.31	3.31	0.5	mg/L	107	106	<1
	Nitrite Nitrogen	EPA 300.0	1804287-013	0.067		0.173	0.171	0.125	mg/L	85	83	1
QC18040537 MS 1	Total Phosphorous as P	SM 4500-P E	1804283-003	0.062	M	0.144	0.140	0.25	mg/L	NC	NC	NC
QC18040537 MS 2	Total Phosphorous as P	SM 4500-P E	1804285-004	0.064	M	0.204	0.172	0.25	mg/L	NC	NC	NC
QC18040551 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1804280-001	0.118	J	0.585	0.580	0.5	mg/L	93	92	<1
QC18040551 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1804284-002	0.433		0.935	0.905	0.5	mg/L	100	94	3
QC18040552 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1804279-001	0.200	M	0.625	0.630	0.5	mg/L	NC	NC	NC
QC18040552 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1804287-008	1.55	M	2.20	2.09	0.5	mg/L	NC	NC	NC

 $DF \hbox{=-}Dilution\ Factor,\ RL \hbox{=-}Reporting\ Limit,\ ND \hbox{=-}Not\ Detected\ or\ <\!RL$

Page 9 of 10

Balance Hydrologics - 1804287

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPD %
QC18040589 MS 1	Total Phosphorous as P	SM 4500-P E	1804287-009	0.175	M	0.289	0.327	0.25	mg/L	NC	NC	NC
QC18040589 MS 2	Total Phosphorous as P	SM 4500-P E	1804288-005	0.066	M	0.249	0.188	0.25	mg/L	NC	NC	NC
QC18040603 MS 1	Total Kjeldahl Nitrogen	EPA 351.2	1804287-014	0.930	M	1.34	1.42	0.5	mg/L	NC	NC	NC
QC18040603 MS 2	Total Kjeldahl Nitrogen	EPA 351.2	1804300-001	ND		0.545	0.520	0.5	mg/L	95	90	5

	Nevada 89801 775) 777-9933 /egas, Nevada 89102		Elko Control LV Control Report Due Date Page	control #	D. S.	
City, State & Zip Truckee CF	96161		5 Day* (25%) 48 Hour* (100%)	72 24 Surcharges	4 Hour* (200%)	
Contact Brian Hastin	5		Samples Collected Which State?	From	Report	Results Via
Phone 538.550 .9776	Collector's Name		NVCA Other Compliance Monito		PDF	EDD
Fax	PWS/Project Name		Yes N Report to Regulatory	lo Agency?	Other	QC Required?
P.O. Number	PWS/Project Number 21313	s Nō.	Yes N	lo	Yes equested	No
Billing Address (if different Company Balance Hydrolog Address 400 Bancroff W City, State & Zip Berkeley CA Contact Rachel Boifano	eyics ey guite 101 4 94710 ex eve hydro.com	A OF	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	N X	X Ecoli	Spl No.
1.00	1751	 			1/1	1 5
ACW MLC	4/7/16/8:30	112		<u>۸۱</u> ۸	! - - 	
YDW SBC(1)	47/19/10:00	112)	NY X	XX		3
SBUD CWW(1)	4/7/18/10:15	1 2 7		$\lambda \lambda$		
GBC@ NAR	4/7/189:25	117		XX		5
SBC @ RHR	4/7/8 8:50	1/25		ΧX	X	6
Blank	4/6/18 9:30			ľ		7
		 	 	_		
	<u> </u>				1 1 1	
Instructions/Comments/Special Requirements:						
County Manda	Madanata DINI Cont. Mar. BRINI	oden Main CD . O	101-1 CO 0 11 1114			
Sample Matrix Key** DW = Drinking Water WW = V	· · · · · · · · · · · · · · · · · · ·					
*SAMPLE PRESERVATIVES: 1=Unpres			· · · · · · · · · · · · · · · · · · ·			
Temp Custody Seal # of D	ATE TIME Samples	Relinquished	Ru—	Sample	eviana P vac	ed Bv /

Ν None Ν None Ν None °C Ν None

WETLAB'S Standard Terms and Conditions apply unless written agreements specify otherwise. Payment terms are Net 30.

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636). To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted. WETLAB will dispose of samples 90 days from samples expipt. Client may request a longer sample storage time for an additional fee.

30 Please contact your Project Manager for details.

	VIRONMENTAL
TESTING L	<u>ABORATORY</u>

Specializing in Soil, Hazardous Waste and Water Analysis.

475 E. Greg Street #119 I Sparks, Nevada 89431 I www.WETLaboratory.com

tel (775) 777-9933 I fax (775) 777-9933 3230 Polaris Ave., Suite 4 I Las Vegas, Nevada 89102

tel (702) 475-8899 | fax (702) 776-6152

WETLAB Order ID. 1804287										
Sparks Control #	_									
Elko Control #	_									
LV Control #										
Report										
Due Date										
	_									

Client									77 SV	Turna	round	Time f	leguin	ments) i	1		
Client							1		- Assessment Si	Sta	ndard _	C		W Maddle of the	A SECTION AND ADDRESS OF	ometer of the second	ALCOHOL:	
Address								5 Day* (25%) 7 48 Hour* (100%) 2										
City, State & Zip							-				Surcha	erges v	Vill App	iy				
Contact								Sample V			From		R	eport l	Result	Via		
Phone	Collecto	r's Name					NV CA Other PDF EDD											
Fax	PWS/Pro	oject Nam	ne				نست	Compl Yes	lance		oring? lo	_	Other_				_	
P.O. Number		oject Num					Report to Regulatory Agency? Yes No						Yes No					
Email -					S	NO.			3	Ana	lyse	s Re	dne	ted				
Billing Address (if differe	nt than Cli	ent Add	ress)		A	OF C	- [- 1	- [- 1	- 1	- 1	- 1				_/	
Company					M	0							-			-	-/1	
Address					Ļ	N		L	1_	-						-	II	
City, State & Zip					Æ	A	1-	2/4	1	4	-				1	1	II	
Contact					T	0	1-	₹~;	र्ग_ ५	g.r	1.	1_	M.				$I \mid I$	
Phone	-ax				Y	E	17	11	17	7.7	Kľ	\mathcal{X}	K				/	
Email SAMPLE ID/LOCATIO	Ń	DATE	TIME	PRES TYPE	E	R	110	11-	ÌÒ	15	仁	\succ	7	1	1	1	Spl.	
· M 0		. 77	· · · · · · · · · · · · · · · · · · ·			S							\vdash	-	\dashv	\dashv	No.	
NID W BED (2)		4/6/18	17:00	-	Ady	Z	X	χÌ		X	<u>(1)</u>			\dashv	\dashv	_	9	
NTO 6 B-1) (3)		4/6/18	19:30	-	H	2	λ	X	X	<u> </u>	Δ					\dashv	Щ	
NTO WBFD (4)		4/6/18	21:30		Ш	2	X	X	X	\mathbb{Z}_{\downarrow}	X			_			(0)	
SDDE 009936 (1)		4616	12:56		Ш	2	X	X	X	X	X	X					(
500E 004936 (2)		4/6/18	15:09		Ш	2	X	χ	X	X	X	Ί					2	
5NOE 008936 (3)	k	1/6/19	21:34		Ш	2	'X	X	X	ΧI	X	X					(3)	
400F, 008936 (4)	(417118	2:33			2	X	χÌ	X	Χl	X	X					4	
		-1-1					_		1							Ï	7	
																	T	
Instructions/Comments/Special Requirements:																		
													-					
Sample Matrix Key** DW = Drinking Water WW	= Wastewater S	SW = Surface	Water MW	= Monitoring	Well S	SD = Sc	olid/Slu	dge S	0 = Sc	oil HW	/ = Haz	ardou	s Waste	ОТНІ	ER:			
SAMPLE PRESERVATIVES: 1=Unpr	eserved 2=	=H2SO4	3=NaOH	4=HCI	5=HI	NO3	6=N	a2S2	203	7=Z	nOA	c+Na	ЮH	8=H0		OA V	ial	
Temp Custody Seal # of Containers	DATE	TIME	San	nples Re	ljnqı	uishę	g B	y	Τ.		Şan	<u>iple:</u>	s Re	ceive	ed B	<u>/</u>		
124c Y N None 4	17/18	12:35			2		٤			W	ىل		اعا	He	la	حلا		
C Y N None						V		`	ľ							_		
°C Y N None																		
°C Y N None																		
WETLAB'S Standard Terms and Co	nditions a	pply uni	ess writt	en agre	emei	nts s	peci	fy ot	herv	vise.	. Pay	mer	nt ter	ms a	ıre N	et 3	D.	

Client/Collector attests to the validity and authenticity of this (these) sample(s) and, is (are) aware that tampering with or intentionally mislabeling the sample(s) location, date or time of collection may be considered fraud and subject to legal action (NAC445.0636). Initial

To the maximum extent permitted by law, the Client agrees to limit the liability of WETLAB for the Client's damages to the total compensation received, unless other agreements are made in writing. This limitation shall apply regardless of the cause of action or legal theory pled or asserted.

WETLAB will dispose of samples 90 days from sample receipt. Client may request a longer sample storage time for an additional fee. Please contact your Project Manager for details.

301.2E